Rationale: Transplantation of allogeneic cardiac stem/progenitor cells (CPC) in experimental myocardial infarction promoted cardiac regeneration and improved heart function. Although this has enhanced prospects of using allogeneic CPC for cardiac repair, the mechanisms regulating the behavior of these allogeneic cells, which are central to clinical applications, remain poorly understood.Objective: T cells orchestrate the allogeneic adaptive immune response. Therefore, to provide insight into the mechanisms regulating the immunologic behavior of human CPC (hCPC), we investigated the allogeneic T-cell response elicited by cryopreserved c-kit-selected hCPC. Methods and Results FoxP3high effector regulatory T cells. The regulatory T-cell proliferation and amplification were dependent on the interaction with the B7 family member programmed death ligand 1 (PD-L1), which is substantially expressed on hCPC and increased under inflammatory conditions. Thus, hCPC in allogeneic settings acquire the capacity to downregulate an ongoing immune response, which was dependent on PD-L1. Conclusions:
BackgroundThe aggressiveness of melanoma tumors is likely to rely on their well-recognized heterogeneity and plasticity. Melanoma comprises multi-subpopulations of cancer cells some of which may possess stem cell-like properties. Although useful, the sphere-formation assay to identify stem cell-like or tumor initiating cell subpopulations in melanoma has been challenged, and it is unclear if this model can predict a functional phenotype associated with aggressive tumor cells.Methodology/Principal FindingsWe analyzed the molecular and functional phenotypes of melanoma spheroids formed in neural crest cell medium. Whether from metastatic or advanced primary tumors, spheroid cells expressed melanoma-associated markers. They displayed higher capacity to differentiate along mesenchymal lineages and enhanced expression of SOX2, NANOG, KLF4, and/or OCT4 transcription factors, but not enhanced self-renewal or tumorigenicity when compared to their adherent counterparts. Gene expression profiling attributed a neural crest cell signature to these spheroids and indicated that a migratory/invasive and immune-function modulating program could be associated with these cells. In vitro assays confirmed that spheroids display enhanced migratory/invasive capacities. In immune activation assays, spheroid cells elicited a poorer allogenic response from immune cells and inhibited mitogen-dependent T cells activation and proliferation more efficiently than their adherent counterparts. Our findings reveal a novel immune-modulator function of melanoma spheroids and suggest specific roles for spheroids in invasion and in evasion of antitumor immunity.Conclusion/SignificanceThe association of a more plastic, invasive and evasive, thus a more aggressive tumor phenotype with melanoma spheroids reveals a previously unrecognized aspect of tumor cells expanded as spheroid cultures. While of limited efficiency for melanoma initiating cell identification, our melanoma spheroid model predicted aggressive phenotype and suggested that aggressiveness and heterogeneity of melanoma tumors can be supported by subpopulations other than cancer stem cells. Therefore, it could be constructive to investigate melanoma aggressiveness, relevant to patients and clinical transferability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.