The application of ethynylferrocene, FcCCH (1), as a highly efficient electroactive precursor for the thiol–yne click reaction is presented. For this purpose, a wide range of functionalized thiols, namely 2-mercaptoethanol, 1-thioglycerol, 3-mercaptopropionic acid, 4-aminothiophenol, and benzene-1,3-dithiol as well as tetrathiol pentaerythritol tetrakis(3-mercaptopropionate), were investigated. This facile thiol–ethynylferrocene radical reaction has resulted in the quantitative formation and isolation of the newly ferrocenyl–vinyl sulfides FcCHCHS(CH2)2OH (2 Z and 2 E ), FcCHCHSCH2CH(OH)CH2OH (3 Z and 3 E ), FcCHCHS(CH2)2COOH (4 Z and 4 E ), FcC(CH2)S(1,4-C6H4)NH2 (5α), FcCHCHS(1,3-C6H4)SCHCHFc (6), and [FcCHCHS(CH2)2COOCH2]4C (7). Thiol–ethynylferrocene reactions have been initiated either by heat, in toluene with AIBN, or by UV light irradiation in THF in the presence of DMPA as photoinitiator. The outcome of the hydrothiolation of ethynylferrocene strongly depends on the thiol structure and on the initiation method employed. A simple mixing of metallocene 1 with the thiol HS(CH2)2OH or HS(CH2)2COOH in a proper ratio, in THF at 20 °C, in a initiator-free thiol–yne reaction, causes hydrothiolation of 1 to occur, allowing for the formation of vinyl sulfides 2 Z , 2 E and 4 Z , 4 E in good isolated yields. In contrast to the bis-addition typically observed for thiol–yne reactions, no double hydrothiolation to FcCCH has been observed for any of the thiols under any conditions studied. Electrochemical studies showed that tetrametallic compound 7, containing four sulfur-bridged ferrocenyl–vinyl moieties, behaves as a tetrapodal adsorbate molecule, exhibiting excellent chemisorption properties, and spontaneously forms robustly adsorbed 7 films onto Au or Pt electrode surfaces.
The glycosylation of plant polyphenols may modulate their solubility and bioavailability and protect these molecules from oxygen, light degradation, and during gastrointestinal transit. In this work, the synthesis of various α-glucosyl derivatives of (-)-epigallocatechin gallate, the predominant catechin in green tea, was performed in water at 50 °C by a transglycosylation reaction catalyzed by cyclodextrin glycosyltransferase from Thermoanaerobacter sp. The molecular weight of reaction products was determined by high-performance liquid chromatography coupled to mass spectrometry. Using hydrolyzed potato starch as a glucosyl donor, two main monoglucosides were obtained with conversion yields of 58 and 13%, respectively. The products were isolated and chemically characterized by combining two-dimensional nuclear magnetic resonance methods. The major derivative was epigallocatechin gallate 3'- O-α-d-glucopyranoside (1), and the minor derivative was epigallocatechin gallate 7- O-α-d-glucopyranoside (2).
A concurrent bienzymatic cascade for the synthesis of optically pure (S)-4-methoxymandelonitrile benzoate ((S)-3) starting from 4-anisaldehyde (1) has been developed. The cascade involves an enantioselective Manihot esculenta hydroxynitrile lyase-catalyzed hydrocyanation of 1, and the subsequent benzoylation of the resulting cyanohydrin (S)-2 catalyzed by Candida antarctica lipase A in organic solvent. To accomplish this new direct synthesis of the protected enantiopure cyanohydrin, both enzymes were immobilized and each biocatalytic step was studied separately in search for a window of compatibility. In addition, potential cross-interactions between the two reactions were identified. Optimization of the cascade resulted in 81% conversion of the aldehyde to the corresponding benzoyl cyanohydrin with 98% enantiomeric excess.
The regioselective α-glucosylation of hesperetin was achieved by a transglycosylation reaction catalyzed by cyclodextrin glucanotransferase (CGTase) from Thermoanaerobacter sp. using soluble starch as glucosyl donor. By combining mass spectrometry (ESI-TOF) and 2D-NMR analysis, the main monoglucosylated derivative was fully characterized (hesperetin 7-O-α-d-glucopyranoside). In order to increase the yield of monoglucoside, several reaction parameters were optimized: Nature and percentage of cosolvent, composition of the aqueous phase, glucosyl donor, temperature, and the concentrations of hesperetin and soluble starch. Under the optimal conditions, which included the presence of 30% of bis(2-methoxyethyl) ether as cosolvent, the maximum concentration of monoglucoside was approximately 2 mM, obtained after 24 h of reaction. To our knowledge, this is the first report of direct glucosylation of hesperetin employing free enzymes instead of whole cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.