Effects of insulin on cerebral arteries have never been examined. Therefore, we determined cerebrovascular actions of insulin in rats. Both PCR and immunoblot studies identified insulin receptor expression in cerebral arteries and in cultured cerebral microvascular endothelial cells (CMVECs). Diameter measurements (% change) of isolated rat cerebral arteries showed a biphasic dose response to insulin with an initial vasoconstriction at 0.1 ng/mL (À9.7% ± 1.6%), followed by vasodilation at 1 to 100 ng/mL (31.9%±1.4%). Insulin also increased cortical blood flow in vivo (30% ± 8% at 120 ng/mL) when applied topically. Removal of reactive oxygen species (ROS) abolished the vasoconstriction to insulin. Endothelial denudation, inhibition of K + channels, and nitric oxide (NO) synthase, all diminished insulin-induced vasodilation. Inhibition of cytochrome P450 enhanced vasodilation in endothelium-intact arteries, but promoted vasoconstriction after endothelial denudation. Inhibition of cyclooxygenase abolished vasoconstriction and enhanced vasodilation to insulin in all arteries. Inhibition of endothelin type A receptors enhanced vasodilation, whereas endothelin type B receptor blockade diminished vasodilation. Insulin treatment in vitro increased Akt phosphorylation in cerebral arteries and CMVECs. Fluorescence studies of CMVECs showed that insulin increased intracellular calcium and enhanced the generation of NO and ROS. Thus, cerebrovascular responses to insulin were mediated by complex mechanisms originating in both the endothelium and smooth muscle.
The objectives of our present experiments were to determine whether the BK Ca channel agonist NS1619 is able to induce immediate preconditioning in cultured rat cortical neurons and to elucidate the role of BK Ca channels in the initiation of immediate preconditioning. NS1619 depolarized mitochondria and increased reactive oxygen species (ROS) generation, but neither of these effects was inhibited by BK Ca channel antagonists. NS1619 also activated the extracellular signal-regulated kinase signaling pathways. One-hour treatment with NS1619 induced immediate protection against glutamate excitotoxicity (viability 24 h after glutamate exposure: control, 58.45±0.95%; NS1619 50 μM, 78.99±0.90%*; NS1619 100 μM, 86.89±1.20%*; NS1619 150 μM, 93.23±1.23%*; mean ±SEM; *p<0.05 vs. control; n=16-32). Eliminating ROS during the preconditioning phase effectively blocked the development of cytoprotection. In contrast, the BK Ca channel blockers iberiotoxin and paxilline, the phosphoinositide 3-kinase inhibitor wortmannin, the protein kinase C blocker chelerythrine, and the mitogen activated protein kinase antagonist PD98059 were unable to antagonize the immediate neuroprotective effect. Finally, preconditioning with NS1619 reduced the calcium load and ROS surge upon glutamate exposure and increased superoxide dismutase activity. Our results indicate that NS1619 is an effective inducer of immediate neuronal preconditioning, but the neuroprotective effect is independent of the activation of BK Ca channels.
Stimulus reduction is an effective way to study visual performance. Cues such as surface characteristics, colour and inner lines can be removed from stimuli, revealing how the change affects recognition and neural processing. An extreme reduction is the removal of the very stimulus, defining it with illusory lines. Perceived boundaries without physical differences between shape and background are called illusory (or subjective) contours. Illusory and real contours activate early stages of the macaque visual pathway in similar ways. However, data relating to the processing of illusory contours in higher visual areas are scarce. We recently reported how illusory contours based on abutting-line gratings affect neurones in the monkey inferotemporal cortex, an area essential for object and shape vision. We now present data on how inferotemporal cortical neurones of monkeys react to another type of shapes, the Kanizsa figures. A set of line drawings, silhouettes, their illusory contour-based counterparts, and control shapes have been presented to awake, fixating rhesus monkeys while single-cell activity was recorded in the anterior part of the inferotemporal cortex. Most of the recorded neurones were responsive and selective to shapes presented as illusory contours. Shape selectivity was proved to be different for line drawings and illusory contours, and also for silhouettes and illusory contours. Neuronal response latencies for Kanizsa figures were significantly longer than those for line drawings and silhouettes. These results reveal differences in processing for Kanizsa figures and shapes having real contours in the monkey inferotemporal cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.