From previous developmental studies, it has been proposed that the neurons of the ventrolateral cortex, including the primary olfactory cortex, differentiate from progenitor cells in the lateral ganglionic eminence. The objective of the present study was to test this hypothesis. The cells first generated in the forebrain of the rat migrate to the surface of the telencephalic vesicle by embryonic day (E) 12. Using [3 H]thymidine, we found that most of these cells contributed to the formation of the deep layer III of the primary olfactory cortex. To study the migratory routes of these cells, we made localized injections of the carbocyanine fluorescent tracers DiI and DiA into various parts of the lateral ganglionic eminence in living embryos at E12-E14 and subsequently maintained the embryos in a culture device for 17-48 hr. After fixation, most migrating cells were located at the surface of the telencephalic vesicle, whereas others were seen coursing tangentially into the preplate. Injections made at E13 and in fixed tissue at E15 showed that migrating cells follow radial glial fibers extending from the ventricular zone of the lateral ganglionic eminence to the ventrolateral surface of the telencephalic vesicle. The spatial distribution of radial glial fibers was studied in Golgi preparations, and these observations provided further evidence of the existence of long glial fibers extending from the ventricular zone of the lateral ganglionic eminence to the ventrolateral cortex. We conclude that cells of the primary olfactory cortex derive from the lateral ganglionic eminence and that some early generated cells migrating from the lateral ganglionic eminence transgress the cortico-striatal boundary entering the preplate of the neocortical primordium.
Astrocytes are the most numerous cell type in the brain, where they are known to play multiple important functions. While there is increasing evidence of their morphological, molecular, and functional heterogeneity, it is not clear whether their positional and morphological identities are specified during brain development. We address this problem with a novel strategy to analyze cell lineages through the combinatorial expression of fluorescent proteins. Following in utero electroporation, stochastic expression of these proteins produces inheritable marks that enable the long-term in vivo tracing of glial progenitor lineages. Analyses of clonal dispersion in the adult cortex revealed unanticipated and highly specific clonal distribution patterns. In addition to the existence of clonal arrangements in specific domains, we found that different classes of astrocytes emerge from different clones. This reinforces the view that lineage origin impinges on cell heterogeneity, unveiling a new level of astrocyte diversity likely associated with specific regional functions.
SUMMARY NR3A is the only NMDA receptor (NMDAR) subunit that down-regulates sharply prior to the onset of sensitive periods for plasticity, yet the functional importance of this transient expression remains largely unknown. To investigate the possibility that removal/replacement of juvenile NR3A-containing NMDARs is involved in experience-driven synapse maturation, we used a reversible transgenic system that allowed persistent NR3A expression in the postnatal forebrain. We found that removal of NR3A is required to develop strong NMDAR currents, full expression of long-term synaptic plasticity, a mature synaptic organization characterized by more synapses and larger postsynaptic densities, and the ability to form long-term memories. Deficits associated with prolonged NR3A were reversible, as late-onset suppression of transgene expression rescued both the synaptic and memory impairments. Our results suggest that NR3A behaves as a molecular brake to prevent the premature strengthening and stabilization of excitatory synapses, and that NR3A removal might thereby initiate critical stages of synapse maturation during early postnatal neural development.
Along with tufted cells, mitral cells are the principal projection neurons in the olfactory bulb (OB). During the development of the OB, mitral cells migrate from the ventricular zone to the intermediate zone, where they begin to send axons along the lateral olfactory tract (LOT) to the cortical olfactory zones. Subsequently, they lose their tangential orientation, enabling them to make contact with the axons of the olfactory sensory neurons (OSN) that innervate the whole OB. Here, we investigated the distinct morphological features displayed by developing mitral cells and analyzed the relationship between the changes undertaken by these neurons and the arrival of the OSN axons. Immunostaining for specific markers of developing axons and dendrites, coupled with the use of fluorescent tracers, revealed the morphological changes, the continuous reorientation, and the final refinement that these cells undergo. We found that some of these changes are dependent on the arrival of the OSN axons. Indeed, we identified three main chronological events: 1) newly generated neurons become established in the intermediate zone and project to the LOT; 2) the cells reorient and spread their dendrites at the same time as OSN axons penetrate the OB (this is a sensitive period between embryonic day (E)15-16, in which the arrival of afferents establishes a spatial and temporal gradient that facilitates protoglomerulus and glomerulus formation); and 3) final refinement of the radially orientated cells to adopt a mature morphology. These results suggest that both afferent inputs and intrinsic factors participate to produce the well-defined sensory system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.