Purpose Age‐related macular degeneration (AMD) is a degenerative disease of the macula, often leading to progressive vision loss. The rate of disease progression can vary among individuals and has been associated with multiple risk factors. In this review, we provide an overview of the current literature investigating phenotypic, demographic, environmental, genetic, and molecular risk factors, and propose the most consistently identified risk factors for disease progression in AMD based on these studies. Finally, we describe the potential use of these risk factors for personalised healthcare. Recent findings While phenotypic risk factors such as drusen and pigment abnormalities become more important to predict disease progression during the course of the disease, demographic, environmental, genetic and molecular risk factors are more valuable at earlier disease stages. Demographic and environmental risk factors such as age and smoking are consistently reported to be related to disease progression, while other factors such as sex, body mass index (BMI) and education are less often associated. Of all known AMD variants, variants that are most consistently reported with disease progression are rs10922109 and rs570618 in CFH, rs116503776 in C2/CFB/SKIV2L, rs3750846 in ARMS2/HTRA1 and rs2230199 in C3. However, it seems likely that other AMD variants also contribute to disease progression but to a lesser extent. Rare variants have probably a large effect on disease progression in highly affected families. Furthermore, current prediction models do not include molecular risk factors, while these factors can be measured accurately in the blood. Possible promising molecular risk factors are High‐Density Lipoprotein Cholesterol (HDL‐C), Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), zeaxanthin and lutein. Summary Phenotypic, demographic, environmental, genetic and molecular risk factors can be combined in prediction models to predict disease progression, but the selection of the proper risk factors for personalised risk prediction will differ among individuals and is dependent on their current disease stage. Future prediction models should include a wider set of genetic variants to determine the genetic risk more accurately, and rare variants should be taken into account in highly affected families. In addition, adding molecular factors in prediction models may lead to preventive strategies and personalised advice.
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
Age-related macular degeneration (AMD) is a leading cause of blindness. Genetic variants at the chromosome 1q31.3 encompassing the complement factor H (CFH, FH) and CFH related genes (CFHR1-5) are major determinants of AMD susceptibility, but their molecular consequences remain unclear. Here we demonstrate that FHR-4 plays a prominent role in AMD pathogenesis. We show that systemic FHR-4 levels are elevated in AMD (P-value = 7.1 × 10 −6 ), whereas no difference is seen for FH. Furthermore, FHR-4 accumulates in the choriocapillaris, Bruch's membrane and drusen, and can compete with FH/FHL-1 for C3b binding, preventing FI-mediated C3b cleavage. Critically, the protective allele of the strongest AMD-associated CFH locus variant rs10922109 has the highest association with reduced FHR-4 levels (P-value = 2.2 × 10 −56 ), independently of the AMD-protective CFHR1-3 deletion, and even in those individuals that carry the high-risk allele of rs1061170 (Y402H). Our findings identify FHR-4 as a key molecular player contributing to complement dysregulation in AMD.
Age-related macular degeneration (AMD) is the principal cause of blindness in the elderly population. A strong effect on AMD risk has been reported for genetic variants at the CFH locus, encompassing complement factor H (CFH) and the complement-factor-H-related (CFHR) genes, but the underlying mechanisms are not fully understood. We aimed to dissect the role of factor H (FH) and FH-related (FHR) proteins in AMD in a cohort of 202 controls and 216 individuals with AMD. We detected elevated systemic levels of FHR-1 (p ¼ 1.84 3 10 À6 ), FHR-2 (p ¼ 1.47 3 10 À4 ), FHR-3 (p ¼ 1.05 3 10 À5 ) and FHR-4A (p ¼ 1.22 3 10 À2 ) in AMD, whereas FH concentrations remained unchanged. Common AMD genetic variants and haplotypes at the CFH locus strongly associated with FHR protein concentrations (e.g., FH p.Tyr402His and FHR-2 concentrations, p ¼ 3.68 3 10 À17 ), whereas the association with FH concentrations was limited. Furthermore, in an International AMD Genomics Consortium cohort of 17,596 controls and 15,894 individuals with AMD, we found that low-frequency and rare protein-altering CFHR2 and CFHR5 variants associated with AMD independently of all previously reported genome-wide association study (GWAS) signals (p ¼ 5.03 3 10 À3 and p ¼ 2.81 3 10 À6 , respectively). Low-frequency variants in CFHR2 and CFHR5 led to reduced or absent FHR-2 and FHR-5 concentrations (e.g., p.Cys72Tyr in CFHR2 and FHR-2, p ¼ 2.46 3 10 À16 ). Finally, we showed localization of FHR-2 and FHR-5 in the choriocapillaris and in drusen. Our study identifies FHR proteins as key proteins in the AMD disease mechanism. Consequently, therapies that modulate FHR proteins might be effective for treating or preventing progression of AMD. Such therapies could target specific individuals with AMD on the basis of their genotypes at the CFH locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.