Aquaporin-4 (AQP4) is the predominant water channel in brain and is selectively expressed in astrocytes. Astrocytic endfoot membranes exhibit tenfold higher densities of AQP4 than non-endfoot membranes, making AQP4 an excellent marker of astrocyte polarization. Loss of astrocyte polarization is known to compromise astrocytic function and to be associated with impaired water and K+ homeostasis. Here we investigate by a combination of light and electron microscopic immunocytochemistry whether amyloid deposition is associated with a loss of astrocyte polarization, using AQP4 as a marker. We used the tg-ArcSwe mouse model of Alzheimer's disease, as this model displays perivascular plaques as well as plaques confined to the neuropil. 3D reconstructions were done to establish the spatial relation between plaques and astrocytic endfeet, the latter known to contain the perivascular pool of AQP4. Changes in AQP4 expression emerge just after the appearance of the first plaques. Typically, there is a loss of AQP4 from endfoot membranes at sites of perivascular amyloid deposits, combined with an upregulation of AQP4 in the neuropil surrounding plaques. By electron microscopy it could be verified that the upregulation reflects an increased concentration of AQP4 in those delicate astrocytic processes that abound in synaptic regions. Thus, astrocytes exhibit a redistribution of AQP4 from endfoot membranes to non-endfoot membrane domains. The present data suggest that the development of amyloid deposits is associated with a loss of astrocyte polarization. The possible perturbation of water and K+ homeostasis could contribute to cognitive decline and seizure propensity in patients with Alzheimer's disease.
Astroglial cell survival and ion channel activity are relevant molecular targets for the mechanistic study of neural cell interactions with biomaterials and/or electronic interfaces. Astrogliosis is the most typical reaction to in-vivo brain implants and needs to be avoided by developing biomaterials that preserve astroglial cell physiological function. This cellular phenomenon is characterized by a proliferative state and altered expression of astroglial potassium (K+) channels. Silk is a natural polymer with potential for new biomedical applications due to its ability to support in vitro growth and differentiation of many cell types. We report on silk interactions with cultured neocortical astroglial cells. Astrocytes survival is similar when plated on silk-coated glass and on poly-D-lysine (PDL), a well-known polyionic substrate used to promote astroglial cell adhesion to glass surfaces. Comparative analyses of whole-cell and single-cell patch-clamp experiments reveal that silk- and PDL-coated cells display depolarized resting membrane potentials (∼ -40 mV), very high input resistance, and low specific conductance, with values similar to those of undifferentiated glial cells. Analysis of K+ channel conductance reveals that silk-astrocytes express large outwardly delayed rectifying K+ current (KDR). The magnitude of KDR in PDL- and silk-coated astrocytes is similar, indicating that silk does not alter the resting K+ current. We also demonstrate that guanosine-(GUO) embedded silk enables the direct modulation of astroglial K+ conductance in vitro. Astrocytes plated on GUO-embedded silk are more hyperpolarized and express inward rectifying K+ conductance (Kir). The K+ inward current increase and this is paralleled by upregulation and membrane-polarization of Kir4.1 protein signal. Collectively these results indicate that silk is a suitable biomaterial platform for the in vitro studies of astroglial ion channel responses and related physiology.
Astrocytes are highly polarised cells with processes that ensheath microvessels, cover the brain surface, and abut synapses. The endfoot membrane domains facing microvessels and pia are enriched with aquaporin-4 water channels (AQP4) and other members of the dystrophin associated protein complex (DAPC). Several lines of evidence show that loss of astrocyte polarization, defined by the loss of proteins that are normally enriched in astrocyte endfeet, is a common denominator of several neurological diseases such as mesial temporal lobe epilepsy, Alzheimer’s disease, and stroke. Little is known about the mechanisms responsible for inducing astrocyte polarization in vivo. Here we introduce the term endfoot-basal lamina junctional complex (EBJC) to denote the proteins that consolidate and characterize the gliovascular interface. The present study was initiated in order to resolve the developmental profile of the EBJC in mouse brain. We show that the EBJC is established after the first week postnatally. Through a combination of methodological approaches, including light microscopic and high resolution immunogold cytochemistry, quantitative RT-PCR, and Western blotting, we demonstrate that the different members of this complex exhibit distinct ontogenic profiles––with the extracellular matrix (ECM) proteins laminin and agrin appearing earlier than the other members of the complex. Specifically, while laminin and agrin expression peak at P7, quantitative immunoblot analyses indicate that AQP4, α-syntrophin, and the inwardly rectifying K+ channel Kir4.1 expression increases towards adulthood. Our findings are consistent with ECM having an instructive role in establishing astrocyte polarization in postnatal development and emphasize the need to explore the involvement of ECM in neurological disease.Electronic supplementary materialThe online version of this article (doi:10.1007/s00429-014-0775-z) contains supplementary material, which is available to authorized users.
The brain-blood interface holds the key to our understanding of how cerebral blood flow is regulated and how water and solutes are exchanged between blood and brain. The highly specialized astrocytic membranes that enwrap brain microvessels are salient constituents of the brain-blood interface. These endfoot membranes contain a distinct set of molecules that is anchored to the subendothelial basal lamina forming an endfoot-basal lamina junctional complex. Here we explore the mechanisms underpinning the formation of this complex. By use of a tailor made model system we show that endothelial cells promote AQP4 accumulation by exerting an inductive effect through extracellular matrix components such as agrin, as well as through a direct mechanical interaction with the endfoot processes. Through the compounds they secrete, the endothelial cells also increase AQP4 expression. The present data suggest that the highly specialized gliovascular interface is established through inductive processes that include both chemical and mechanical factors. GLIA 2015;63:2073-2091.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.