Organs and tissues adapt to acute or chronic mechanical stress by remodeling their actin cytoskeletons. Cells that are stimulated by cyclic stretch or shear stress in vitro undergo bimodal cytoskeletal responses that include rapid reinforcement and gradual reorientation of actin stress fibers; however, the mechanism by which cells respond to mechanical cues has been obscure. We report that the application of either unidirectional cyclic stretch or shear stress to cells results in robust mobilization of zyxin from focal adhesions to actin filaments, whereas many other focal adhesion proteins and zyxin family members remain at focal adhesions. Mechanical stress also induces the rapid zyxin-dependent mobilization of vasodilator-stimulated phosphoprotein from focal adhesions to actin filaments. Thickening of actin stress fibers reflects a cellular adaptation to mechanical stress; this cytoskeletal reinforcement coincides with zyxin mobilization and is abrogated in zyxin-null cells. Our findings identify zyxin as a mechanosensitive protein and provide mechanistic insight into how cells respond to mechanical cues.
We have identified a novel 200 kDa nuclear protein that activates the proteasome. The protein, which we call PA200, has been purified to homogeneity from bovine testis and has been shown to activate proteasomal hydrolysis of peptides, but not proteins. Following γ‐irradiation of HeLa cells the uniform nuclear distribution of PA200 changes to a strikingly punctate pattern, a behavior characteristic of many DNA repair proteins. Homologs of PA200 are present in worms, plants and yeast. Others have shown that mutation of yeast PA200 results in hypersensitivity to bleomycin, and exposure of yeast to DNA damaging agents induces the PA200 message. Taken together, these findings implicate PA200 in DNA repair, possibly by recruiting proteasomes to double strand breaks.
Ubiquitin is a covalent signal that targets cellular proteins to the 26 S proteasome. Multiple ubiquitins can be ligated together through the formation of isopeptide bonds between Lys 48 and Gly 76 of successive ubiquitins. Such a polyubiquitin chain constitutes a highly effective proteolytic targeting signal, but its mode of interaction with the proteasome is not well understood. Experiments to address this issue have been limited by difficulties in preparing useful quantities of polyubiquitin chains of uniform length. We report a simple method for large scale synthesis of Lys 48 -linked polyubiquitin chains of defined length. In the first round of synthesis, two ubiquitin derivatives (K48C-ubiquitin and Asp 77 -ubiquitin) were used as substrates for the well characterized ubiquitin-conjugating enzyme E2-25K. Diubiquitin blocked at the nascent proximal and distal chain termini was obtained in quantitative yield. Appropriately deblocked chains were then combined to synthesize higher order chains (tetramer and octamer in the present study). Deblocking was achieved either enzymatically (proximal terminus) or by chemical alkylation (distal terminus). Chains synthesized by this method were used to obtain the first quantitative information concerning the influence of polyubiquitin chain length on binding to the 26 S proteasome; this was done through comparison of different length (unanchored) polyubiquitin chains as inhibitors of ubiquitin-conjugate degradation. K 0.5 was found to decrease ϳ90-fold, from 430 to 4.8 M, as the chain was lengthened from two to eight ubiquitins. The implications of these results for the molecular basis of chain recognition are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.