Host-associated microbiomes are increasingly recognized to contribute to host disease resistance; the temporal dynamics of their community structure and function, however, are poorly understood. We investigated the cutaneous bacterial communities of three newt species, Ichthyosaura alpestris, Lissotriton vulgaris and Triturus cristatus, at approximately weekly intervals for 3 months using 16S ribosomal RNA amplicon sequencing. We hypothesized cutaneous microbiota would vary across time, and that such variation would be linked to changes in predicted fungal-inhibitory function. We observed significant temporal variation within the aquatic phase, and also between aquatic and terrestrial phase newts. By keeping T. cristatus in mesocosms, we demonstrated that structural changes occurred similarly across individuals, highlighting the non-stochastic nature of the bacterial community succession. Temporal changes were mainly associated with fluctuations in relative abundance rather than full turnover of bacterial operational taxonomic units (OTUs). Newt skin microbe fluctuations were not correlated with that of pond microbiota; however, a portion of community variation was explained by environmental temperature. Using a database of amphibian skin bacteria that inhibit the pathogen Batrachochytrium dendrobatidis (Bd), we found that the proportion of reads associated with 'potentially' Bd-inhibitory OTUs did not vary temporally for two of three newt species, suggesting that protective function may be maintained despite temporal variation in community structure.
The predator-predator naïveté hypothesis suggests that non-native predators benefit from being unknown to native predators, resulting in reduced intraguild interference with native predators. This novelty advantage should depend on the ability of native predators to recognize cues of non-native predators. Here, we compared ant aggression and lady beetle reaction in four native and the invasive lady beetle species Harmonia axyridis. In addition, we tested whether lady beetle cuticular hydrocarbons (CHCs) are involved in species recognition, which might explain naïveté if the invasive species has a specific CHC profile. To this end, we conducted behavioral assays confronting two native ant species with both living lady beetles and lady beetle elytra bearing or lacking CHCs of different lady beetle species. Finally, we characterized CHC profiles of the lady beetles using GC–MS. In general, the aggression of Lasius niger was more frequent than that of Myrmica rubra and L. niger aggression was more frequent towards most native lady beetle species compared to H. axyridis. The removal of CHCs from lady beetle elytra reduced aggression of both ant species. If CHCs of respective lady beetle species were added on cue-free elytra, natural strength of L. niger aggression could be restored. CHC analyses revealed a distinct cue composition for each lady beetle species. Our experiments demonstrate that the presence of chemical cues on the surface of lady beetles contribute to the strength of ant aggression against lady beetles. Reduced aggression of L. niger towards H. axyridis and reduced avoidance behavior in H. axyridis compared to the equally voracious C. septempunctata might improve the invasive lady beetle’s access to ant-tended aphids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.