We present a safe and convenient cross-coupling strategy for the large-scale synthesis of biaryls, commercially important structures often found in biologically active molecules. In contrast to traditional cross-couplings, which require the prior preparation of organometallic reagents, we use a copper catalyst to generate the carbon nucleophiles in situ, via decarboxylation of easily accessible arylcarboxylic acid salts. The scope and potential economic impact of the reaction are demonstrated by the synthesis of 26 biaryls, one of which is an intermediate in the large-scale production of the agricultural fungicide Boscalid.
A new strategy for the regiospecific construction of unsymmetrical biaryls is presented, in which easily available salts of carboxylic acids are decarboxylated in situ to give arylmetal species that serve as the nucleophilic component in a catalytic cross-coupling reaction with aryl halides. The catalyst system consists of a copper phenanthroline complex that mediates the extrusion of CO2 from aromatic carboxylates to generate arylcopper species, and a palladium complex that catalyzes the cross-coupling of these intermediates with aryl halides. This bimetallic system allows the direct coupling of various aryl, heteroaryl, or vinyl carboxylic acids with aryl or heteroaryl iodides, bromides, or chlorides at 160 degrees C in the presence of a mild base such as potassium carbonate. The present scope and potential economic impact of the reaction are demonstrated by the synthesis of 42 biaryls, some of which are of substantial industrial relevance. Remaining challenges and future perspectives of the new transformation are discussed.
Small-molecule stabilization of protein-protein interactions (PPIs) is a promising concept in drug discovery, however the question how to identify or design chemical starting points in a "bottom-up" approach is largely unanswered. We report a novel concept for identifying initial chemical matter for PPI stabilization based on imine-forming fragments. The imine bond offers a covalent anchor for sitedirected fragment targeting, whereas its transient nature enables efficient analysis of structure-activity relationships. This bond enables fragment identification and optimisation using protein crystallography. We report novel fragments that bind specifically to a lysine at the PPI interface of the p65subunit-derived peptide of NF-kB with the adapter protein 14-3-3. Those fragments that subsequently establish contacts with the p65-derived peptide, rather than with 14-3-3, efficiently stabilize the 14-3-3/p65 complex and offer novel starting points for molecular glues.
The stabilization of protein complexes has emerged as a promising modality, expanding the number of entry points for novel therapeutic intervention. Targeting proteins that mediate protein–protein interactions (PPIs), such as hub proteins, is equally challenging and rewarding as they offer an intervention platform for a variety of diseases, due to their large interactome. 14-3-3 hub proteins bind phosphorylated motifs of their interaction partners in a conserved binding channel. The 14-3-3 PPI interface is consequently only diversified by its different interaction partners. Therefore, it is essential to consider, additionally to the potency, also the selectivity of stabilizer molecules. Targeting a lysine residue at the interface of the composite 14-3-3 complex, which can be targeted explicitly via aldimine-forming fragments, we studied the de novo design of PPI stabilizers under consideration of potential selectivity. By applying cooperativity analysis of ternary complex formation, we developed a reversible covalent molecular glue for the 14-3-3/Pin1 interaction. This small fragment led to a more than 250-fold stabilization of the 14-3-3/Pin1 interaction by selective interfacing with a unique tryptophan in Pin1. This study illustrates how cooperative complex formation drives selective PPI stabilization. Further, it highlights how specific interactions within a hub proteins interactome can be stabilized over other interactions with a common binding motif.
Small-molecule stabilization of protein-protein interactions (PPIs) is a promising concept in drug discovery, however the question how to identify or design chemical starting points in a "bottom-up" approach is largely unanswered. We report a novel concept for identifying initial chemical matter for PPI stabilization based on imine-forming fragments. The imine bond offers a covalent anchor for sitedirected fragment targeting, whereas its transient nature enables efficient analysis of structure-activity relationships. This bond enables fragment identification and optimisation using protein crystallography. We report novel fragments that bind specifically to a lysine at the PPI interface of the p65subunit-derived peptide of NF-kB with the adapter protein 14-3-3. Those fragments that subsequently establish contacts with the p65-derived peptide, rather than with 14-3-3, efficiently stabilize the 14-3-3/p65 complex and offer novel starting points for molecular glues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.