Purpose: To determine whether altering the dietary content of ω-6 (n-6) and ω-3 (n-3) polyunsaturated fatty acids affects the growth of androgen-sensitive prostate cancer xenografts, tumor membrane fatty acid composition, and tumor cyclooxygenase-2 and prostaglandin E2 (PGE2) levels. Experimental Design: Individually caged male severe combined immunodeficiency mice were fed isocaloric 20% kcal fat diets with the fat derived either primarily from n-6 fatty acids (n-6 group) or with the fat consisting of n-6 and n-3 fatty acids in a ratio of 1:1 (n-3 group), and injected s.c. with Los Angeles Prostate Cancer 4 (LAPC-4) cells. Tumor volumes and mouse weights were measured weekly, caloric intake was measured 3 days per week, and tumors and serum were harvested at 8 weeks postinjection. Results: Tumor growth rates, final tumor volumes, and serum prostate-specific antigen levels were reduced in the n-3 group relative to the n-6 group. The n-3 group tumors had decreased proliferation (Ki67 staining) and increased apoptosis (terminal nucleotidyl transferase–mediated nick end labeling staining). In vitro proliferation of LAPC-4 cells in medium containing n-3 group serum was reduced by 22% relative to LAPC-4 cells cultured in medium containing serum from the n-6 group. The n-6/n-3 fatty acid ratios in serum and tumor membranes were lower in the n-3 group relative to the n-6 group. In addition, n-3 group tumors had decreased cyclooxygenase-2 protein and mRNA levels, an 83% reduction in PGE2 levels, and decreased vascular endothelial growth factor expression. Conclusion: These results provide a sound basis for clinical trials evaluating the effect of dietary n-3 fatty acids from fish oil on tumor PGE2 and membrane fatty acid composition, and serum and tumor biomarkers of progression in men with prostate cancer.
Realization that many tumor suppressor genes are silenced by epigenetic mechanisms has stimulated the discovery of novel tumor suppressor genes. We used a variety of research tools to search for genes that are epigenetically silenced in human endometrial cancers. Changes in global gene expression of the endometrial cancer cell line Ishikawa was analyzed after treatment with the demethylating agent 5-aza-2V -deoxycytidine combined with the histone deacetylase inhibitor suberoylanilide bishydroxamide. By screening over 22,000 genes, candidate tumor suppressor genes were identified. Additional microarray analysis and real-time reverse transcription-PCR of normal and cancerous endometrial samples and search for CpG islands further refined the list. Tazarotene-induced gene-1 (Tig1) and CCAAT/enhancer binding protein-A (C/ebpa) were chosen for further study. Expression of both genes was low in endometrial cancer cell lines and clinical samples but high in normal endometrial tissues. Bisulfite sequencing, restriction analysis, and/or methylationspecific PCR revealed aberrant methylation of the CpG island in the Tig1 gene of all 6 endometrial cancer cell lines examined and 4 of 18 clinical endometrial cancers, whereas the C/ebpa promoter remained unmethylated in endometrial cancers. Chromatin immunoprecipitation showed increased acetylated histone H3 bound to both Tig1 and C/ebpa genes after treatment with 5-aza-2V -deoxycytidine and/or suberoylanilide bishydroxamide. Forced expression of either TIG1 or C/EBPa led to significant growth reduction of Ishikawa cells. Our data suggest that C/ebpa and Tig1 function as tumor suppressor proteins in endometrial cancers and that their reexpression may be a therapeutic target. (Mol Cancer Res 2005;3(5):261 -9)
BACKGROUND Human epidermal growth factor receptor 2 (HER2) is overexpressed in 25–30% of ovarian carcinoma cases and a correlation between increased HER2 expression and decreased survival has been demonstrated. HER2 is a ligand‐less member of the HER family that functions as the preferred coreceptor for epidermal growth factor receptor (EGFR), HER3, and HER4. METHODS An approach was developed to target HER2's role as a coreceptor using a monoclonal antibody, 2C4, which sterically hinders HER2's recruitment into a functional HER complex. RESULTS HER2 was robustly expressed in all eight ovarian carcinoma cell lines; expression of EGFR and HER3 was variable. Even though four of the eight cell lines responded to EGF, 2C4 antibody moderately inhibited in vitro proliferation of only two cell lines (OVCA433 and SK‐OV‐3). Furthermore, ligand‐stimulated p‐MAPK expression was inhibited by 2C4 only in these two cell lines after exposure to EGF. Immunoprecipitation and eTag analysis revealed that OVCA433 expressed heterodimers of EGFR/HER2, and these heterodimers were disrupted after treatment with 2C4, whereas OVCA432 cells did not have these heterodimers. In murine xenograft experiments, the in vivo growth of OVCA433, but not of OVCA432, ovarian carcinoma cells was significantly inhibited by 2C4 treatment of the mice. CONCLUSION 2C4 is able to disrupt the HER signaling pathway and inhibit the in vitro and in vivo growth of ovarian carcinoma cell lines. The response appears limited to lines in which HER2 heterodimers were able to transduce proliferative signals. Our findings suggest a strong rationale to conduct clinical trials of 2C4 in a subset of patients with ovarian tumors. Cancer 2005. © 2005 American Cancer Society.
Abstract. We set out to generate new human myeloma tumors that grow in immunodeficient mice and can be used for pathophysiological studies and rapid evaluation of new therapies. Fresh whole core bone marrow (BM) biopsies taken from 33 myeloma patients were engrafted into the hind limb muscle of severe combined immunodeficient (SCID) mice. Human Ig was detected in 28/33 mice and three grew palpable tumors displaying many features of human myeloma including morphology, immunophenotype and BM plasmacytosis. Following intramuscular passage, we generated large numbers of mice with predictable increases in tumor growth and human paraprotein levels. We further characterized the model generated from an IgGÏ-producing tumor known as LAGÏ-1 and determined the effects of the proteasome inhibitor bortezomib, the alkylating agent melphalan, and the DNA damaging agent liposomal doxorubicin, on the growth of this tumor. LAGÏ-1-bearing mice receiving higher doses of bortezomib showed reduced tumor growth whereas a lower dose had no effect. In contrast, melphalan did not significantly alter tumor growth, except minimally at high doses, reflecting the resistance of this patient's tumor to this drug. We also used our intramuscular (i.m.) LAGÏ-1 model to optimize the dosing schedule of liposomal doxorubicin. Low doses administered once daily three days per week decreased tumor growth and human paraprotein levels whereas much higher doses given once weekly had no anti-myeloma effects. Furthermore, LAGÏ-1 cells produce local tumors when injected subcutaneously and lytic lesions when injected intravenously allowing for multiple methods of evaluating the anti-myeloma effects of a variety of agents. Our new clinically relevant SCID models of human myeloma should greatly facilitate drug development and enable novel therapies to quickly move from the laboratory to the clinic.
Background. The homeostatic chemokine, CXCL13 (BLC, BCA-1), helps direct the recirculation of mature, resting B cells, which express its receptor, CXCR5. CXCL13/CXCR5 are expressed, and may play a role, in some non-AIDS-associated B cell tumors. Objective. To determine if CXCL13/CXCR5 are associated with AIDS-related non-Hodgkin's lymphoma (AIDS-NHL). Methods. Serum CXCL13 levels were measured by ELISA in 46 subjects who developed AIDS-NHL in the Multicenter AIDS Cohort Study and in controls. The expression or function of CXCL13 and CXCR5 was examined on primary AIDS-NHL specimens or AIDS-NHL cell lines. Results. Serum CXCL13 levels were significantly elevated in the AIDS-NHL group compared to controls. All primary AIDS-NHL specimens showed CXCR5 expression and most also showed CXCL13 expression. AIDS-NHL cell lines expressed CXCR5 and showed chemotaxis towards CXCL13. Conclusions. CXCL13/CXCR5 are expressed in AIDS-NHL and could potentially be involved in its biology. CXCL13 may have potential as a biomarker for AIDS-NHL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.