Longitudinal monitoring of cells is required in order to understand the role of delivered stem cells in therapeutic neovascularization. However, there is not an imaging technique that is capable of quantitative, longitudinal assessment of stem cell behaviors with high spatial resolution and sufficient penetration depth. In this study, in vivo and in vitro experiments were performed to demonstrate the efficacy of ultrasound-guided photoacoustic (US/PA) imaging to monitor mesenchymal stem cells (MSCs) labeled with gold nanotracers (Au NTs). The Au NT labeled MSCs, injected intramuscularly in the lower limb of the Lewis rat, were detected and spatially resolved. Furthermore, our quantitative in vitro cell studies indicate that US/PA imaging is capable of high detection sensitivity (1×104 cells/mL) of the Au NT labeled MSCs. Finally, Au NT labeled MSCs captured in the PEGylated fibrin gel system were imaged in vivo, as well as in vitro, over a one week time period, suggesting that longitudinal cell tracking using US/PA imaging is possible. Overall, Au NT labeling of MSCs and US/PA imaging can be an alternative approach in stem cell imaging capable of noninvasive, sensitive, quantitative, longitudinal assessment of stem cell behaviors with high spatial and temporal resolutions at sufficient depths.
Additive manufacturing/3D printing of medical devices is becoming more commonplace, a 3D printed drug is now commercially available, and bioprinting is poised to transition from laboratory to market. Despite the variety of technologies enabling these products, the US Food and Drug Administration (FDA) is charged with protecting and promoting the public health by ensuring these products are safe and effective. To that end, we are presenting the FDA’s current perspective on additive manufacturing/3D printing of medical products ranging from those regulated by the Center for Devices and Radiological Health (CDRH), the Center for Drug Evaluation and Research (CDER), and the Center for Biologics Evaluation and Research (CBER). Each Center presents an overview of the additively manufactured products in their area and the specific concerns and thoughts on using this technology in those product spaces.
Background: Stem cells can differentiate into multiple cell types, and therefore can be used for cellular therapies, including tissue repair. However, the participation of stem cells in tissue repair and neovascularization is not well understood. Therefore, implementing a noninvasive, long-term imaging technique to track stem cells in vivo is needed to obtain a better understanding of the wound healing response. Generally, we are interested in developing an imaging approach to track mesenchymal stem cells (MSCs) in vivo after delivery via a polyethylene glycol modified fibrin matrix (PEGylated fibrin matrix) using MSCs loaded with gold nanoparticles as nanotracers. The objective of the current study was to assess the effects of loading MSCs with gold nanoparticles on cellular function. Methods: In this study, we utilized various gold nanoparticle formulations by varying size and surface coatings and assessed the efficiency of cell labeling using darkfield microscopy. We hypothesized that loading cells with gold nanotracers would not significantly alter cell function due to the inert and biocompatible characteristics of gold. The effect of nanoparticle loading on cell viability and cytotoxicity was analyzed using a LIVE/DEAD stain and an MTT assay. The ability of MSCs to differentiate into adipocytes and osteocytes after nanoparticle loading was also examined. In addition, nanoparticle loading and retention over time was assessed using inductively coupled plasma mass spectrometry (ICP-MS). Conclusion: Our results demonstrate that loading MSCs with gold nanotracers does not alter cell function and, based on the ICP-MS results, long-term imaging and tracking of MSCs is feasible. These findings strengthen the possibility of imaging MSCs in vivo, such as with optical or photoacoustic imaging, to understand better the participation and role of MSCs in neovascularization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.