We report the primary (D-atom) and secondary (H-atom) abstraction dynamics of chlorine atom reaction with butane-1,1,1,4,4,4-d(6). The H- and D-atom abstraction channels were studied over a range of collision energies: 10.4 kcal mol(-1) and 12.9 kcal mol(-1); 5.2 kcal mol(-1) to 12.8 kcal mol(-1), respectively, using crossed molecular beam dc slice ion imaging techniques. Single photon ionization at 157 nm was used to probe the butyl radical products resulting from the H- and D-atom abstraction reactions. These two channels manifest distinct dynamics principally in the translational energy distributions, while the angular distributions are remarkably similar. The reduced translational energy distribution for the primary abstraction showed marked variation with collision energy in the backward direction, while the secondary abstraction showed this variation in the forward direction.
Butanol is now prominent among the prototype renewable biofuels. We have studied oxidation of a variety of butanol isomers under single collision conditions using chlorine atom as the oxidizing agent to gain detailed insight into the energetics and dynamics of these reactions. The interaction of chlorine atom radicals with butanol isomers: n-butanol, iso-butanol, sec-butanol, and tert-butanol have been studied by crossed-beam dc slice ion imaging techniques. The hydroxybutyl radicals generated from the H-abstraction processes were probed by single photon ionization using an F2 excimer laser. After background subtraction and density-to-flux correction of the raw images, translational energy distribution and product angular distributions were generated. At low collision energy, the hydroxyalkyl products are backscattered with respect to the alcohol beam and the scattering shifts to the forward direction as the collision energy is increased. The translational energy distributions are reminiscent to that of Cl + pentane reactions we studied earlier, i.e. a sharp forward peak -80% of the collision energy appears at the high collision energy. Isomer-specific details of the reactions will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.