It has been proposed that vertical movements of planktonic organisms coupled to a horizontally or vertically stratified circulation pattern could describe a retention mechanism, with ecological advantages such as favoring recruitment success. The Patagonian stock of the Argentine hake Merluccius hubbsi spawns mainly from January to February in relation to a highly productive tidal frontal system. Although retention of fish eggs and larvae has been previously hypothesized for this system, it has not been fully proven and its mechanisms have not yet been proposed for hake early stages. To better understand the physical and biological processes involved in the survival and distribution of hake larvae, we focused on transport features and associated larval behavior governing the retention of larvae in the spawning area and their subsequent distribution to settlement and nursery grounds. To test this hypothesis at appropriate spatial and temporal scales, we analyzed acoustic records to describe vertical and horizontal distribution patterns of hake larvae, discrete plankton samples to confirm the identity of acoustic targets, and outputs from a numerical circulation model to estimate current patterns in the region during the hake spawning months. Coinciding with the development of a functional swimbladder, hake larvae of 4 mm and larger showed a strong vertical distribution pattern associated with a sound scattering layer migrating from the thermocline during the night to near-bottom depths during the day. This diel vertical migration pattern was associated with the circulation structure, equivalent to a two-layer flow, indicating a recirculation pattern in the vertical plane. The retention of early larval stages in the spawning area was evident from the acoustic data, indicating a persistent location for the bulk of hake larvae at the main spawning ground during summer months. The distribution extends to the rest of the nursery grounds as the breeding season advances in agreement with the general pattern of middle shelf bottom circulation vectors produced by the numerical model. The results are discussed within the framework of Bakun’s fundamental triad, identifying its elements. In addition, a conceptual model for the main biophysical coupling processes during the early life history of M. hubbsi is proposed in order to gain insight about the recruitment mechanism of this species.
ABSTRACT. The early life history, from egg to juvenile, of red porgy Pagrus pagrus, in captivity is described. Yolk larvae were hatched 50 hours after fertilization, at 18°C water temperature. The opening of the mouth took place between the third and fourth day after hatching, corresponding to 2.6-2.8 mm notochordal length. The transformation stage began at 9 mm standard length, approximately 40 days after hatching. The appearance of the fins favored the displacement of pelagic larvae towards the bottom, acquiring their demersal habit during the juvenile stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.