The European Medicines Agency received recently the first marketing authorization application for a biosimilar monoclonal antibody (mAb) and adopted the final guidelines on biosimilar mAbs and Fc-fusion proteins. The agency requires high similarity between biosimilar and reference products for approval. Specifically, the amino acid sequences must be identical. The glycosylation pattern of the antibody is also often considered to be a very important quality attribute due to its strong effect on quality, safety, immunogenicity, pharmacokinetics and potency. Here, we describe a case study of cetuximab, which has been marketed since 2004. Biosimilar versions of the product are now in the pipelines of numerous therapeutic antibody biosimilar developers. We applied a combination of intact, middle-down, middle-up and bottom-up electrospray ionization and matrix assisted laser desorption ionization mass spectrometry techniques to characterize the amino acid sequence and major post-translational modifications of the marketed cetuximab product, with special emphasis on glycosylation. Our results revealed a sequence error in the reported sequence of the light chain in databases and in publications, thus highlighting the potency of mass spectrometry to establish correct antibody sequences. We were also able to achieve a comprehensive identification of cetuximab’s glycoforms and glycosylation profile assessment on both Fab and Fc domains. Taken together, the reported approaches and data form a solid framework for the comparability of antibodies and their biosimilar candidates that could be further applied to routine structural assessments of these and other antibody-based products.
The annexins are family of calcium-regulated phospholipid-binding proteins with diverse roles in cell biology. Individual annexins have been implicated in tumour development and progression, and in this investigation a range of annexins have been studied in colorectal cancer. Annexins A1, A2, A4 and A11 were identified by comparative proteomic analysis to be overexpressed in colorectal cancer. Annexins A1, A2, A4 and A11 were further studied by immunohistochemistry with a colorectal cancer tissue microarray containing primary and metastatic colorectal cancer and also normal colon. There was significant increase in expression in annexins A1 (P ¼ 0.01), A2 (Po0.001), A4 (Po0.001) and A11 (Po0.001) in primary tumours compared with normal colon. There was increasing expression of annexins A2 (P ¼ 0.001), A4 (P ¼ 0.03) and A11 (P ¼ 0.006) with increasing tumour stage. An annexin expression profile was identified by k-means cluster analysis, and the annexin profile was associated with tumour stage (P ¼ 0.01) and also patient survival. Patients in annexin cluster group 1 (low annexin expression) had a better survival (log rank ¼ 5.33, P ¼ 0.02) than patients in cluster group 2 (high annexins A4 and A11 expression). In conclusion, this study has shown that individual annexins are present in colorectal cancer, specific annexins are overexpressed in colorectal cancer and the annexin expression profile is associated with survival.
Liquid chromatography combined with electrospray ionization mass spectrometry (LC/ESI-MS) has been used successfully for the characterization of biomolecules in proteomics in the last few years. This methodology relied largely on the use of reversed-phase chromatography, in particular C18-based resins, which are suitable for separation of peptides. Here we show that polymeric [polystyrene divinylbenzene] monolithic columns can be used to separate peptide mixtures faster and at a higher resolution. For 500 fmol bovine serum albumin, up to 68% sequence coverage and Mascot Mowse scores of >2000 were obtained using a 9 min gradient on a monolithic column coupled to an ion trap mass spectrometer with ultra-fast MS/MS scan rates. In order to achieve similar results using C18 columns, it was necessary to extend gradient times to 30 min. In addition, we demonstrate the utility of this approach for the analysis of whole Escherichia coli cell lysates by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D-SDS-PAGE) in combination with LC/MS/MS using 4 min gradients on monolithic columns. Our results indicate higher throughput capabilities of monolithic columns (3-fold gain in time or more) for conventional proteomics applications, such as protein identification and high sequence coverage usually required for detection of post-translational modifications (PTMs). Further optimization of sensitivity and quality of sequence information is discussed, in particular when combined with mass spectrometers that have very fast MS-MS/MS switching and scanning capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.