ODC (ornithine decarboxylase), the rate-limiting enzyme in polyamine biosynthesis, is regulated by specific inhibitors, AZs (antizymes), which in turn are inhibited by AZI (AZ inhibitor). We originally identified and cloned the cDNA for a novel human ODC-like protein called ODCp (ODC paralogue). Since ODCp was devoid of ODC catalytic activity, we proposed that ODCp is a novel form of AZI. ODCp has subsequently been suggested to function either as mammalian ADC (arginine decarboxylase) or as AZI in mice. Here, we report that human ODCp is a novel AZI (AZIN2). By using yeast two-hybrid screening and in vitro binding assay, we show that ODCp binds AZ1-3. Measurements of the ODC activity and ODC degradation assay reveal that ODCp inhibits AZ1 function as efficiently as AZI both in vitro and in vivo. We further demonstrate that the degradation of ODCp is ubiquitin-dependent and AZ1-independent similar to the degradation of AZI. We also show that human ODCp has no intrinsic ADC activity.
BackgroundUpon IgE-mediated activation, mast cells (MC) exocytose their cytoplasmic secretory granules and release a variety of bioactive substances that trigger inflammatory responses. Polyamines mediate numerous cellular and physiological functions. We report here that MCs express antizyme inhibitor 2 (AZIN2), an activator of polyamine biosynthesis, previously reported to be exclusively expressed in the brain and testis. We have investigated the intracellular localization of AZIN2 both in resting and activated MCs. In addition, we have examined the functional role of polyamines, downstream effectors of AZIN2, as potential regulators of MC activity.Methodology/Principal FindingsImmunostainings show that AZIN2 is expressed in primary and neoplastic human and rodent MCs. We demonstrate that AZIN2 localizes in the Vamp-8 positive, serotonin-containing subset of MC granules, but not in tryptase-containing granules, as revealed by double immunofluorescence stainings. Furthermore, activation of MCs induces rapid upregulation of AZIN2 expression and its redistribution, suggesting a role for AZIN2 in secretory granule exocytosis. We also demonstrate that release of serotonin from activated MCs is polyamine-dependent whereas release of histamine and β-hexosaminidase is not, indicating a granule subtype-specific function for polyamines.Conclusions/SignificanceThe study reports for the first time the expression of AZIN2 outside the brain and testis, and demonstrates the intracellular localization of endogenous AZIN2 in MCs. The granule subtype-specific expression and its induction after MC activation suggest a role for AZIN2 as a local, in situ regulator of polyamine biosynthesis in association with serotonin-containing granules of MCs. Furthermore, our data indicates a novel function for polyamines as selective regulators of serotonin release from MCs.
Polyamines are small cationic molecules that in adult brain are connected to neuronal signaling by regulating inward-rectifier K(+)-channels and different glutamate receptors. Antizyme inhibitors (AZINs) regulate the cellular uptake of polyamines and activate ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine synthesis. Elevated levels of ODC activity and polyamines are detected in various brain disorders including stroke and Alzheimer's disease (AD). We originally reported a novel brain- and testis-specific AZIN, called AZIN2, the distribution of which we have now studied in normal and diseased human brain by in situ hybridization and immunohistochemistry. We found the highest accumulation of AZIN2 in a pearl-on-the-string-like distribution along the axons in both the white and gray matter. AZIN2 was also detected in a vesicle-like distribution in the somas of selected cortical pyramidal neurons. Double-immunofluorescence staining revealed co-localization of AZIN2 and N-methyl D-aspartate-type glutamate receptors (NMDARs) in pyramidal neurons of the cortex. Moreover, we found accumulation of AZIN2 in brains affected by AD, but not by other neurodegenerative disorders (CADASIL or Lewy body disease). ODC activity is mostly linked to cell proliferation, whereas its regulation by AZIN2 in post-mitotically differentiated neurons of the brain apparently serves different purposes. The subcellular distribution of AZIN2 suggests a role in vesicular trafficking.
High activity of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine synthesis, is typically present in rapidly proliferating normal and malignant cells. The mitotically inactive steroidogenic cells in rodent testis and ovaries, however, also display high ODC activity. The activity of ODC in these cells responds to luteinizing hormone, and inhibition of ODC reduces the production of steroid hormones. Polyamines and ODC also control proliferation of germ cells and spermiogenesis. The activity of ODC, especially in proliferating cells, is regulated by antizyme inhibitor (AZIN). This protein displaces ODC from a complex with its inhibitor, antizyme. We have previously identified and cloned a second AZIN, i.e. antizyme inhibitor 2 (AZIN2), which has the highest levels of expression in brain and in testis. In the present study, we have used immunohistochemistry and in situ hybridization to localize the expression of AZIN2 in human gonads. We found a robust expression of AZIN2 in steroidogenic cells: testicular Leydig cells and Leydig cell tumors, in ovarian luteinized cells lining corpus luteum cysts, and in hilus cells. The results suggest that AZIN2 is not primarily involved in regulating the proliferation of the germinal epithelium, indicating a different role for AZIN1 and AZIN2 in the regulation of ODC. The localization of AZIN2 implies possible involvement in the gonadal synthesis and/or release of steroid hormones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.