Shallow aquatic environments are characterized by strong environmental variability. For ectotherms, temperature is the main driver of metabolic activity, thus also shaping performance. Ingestion rates in mysids are fast responses, influenced by metabolic and behavioral activity. We examined ingestion rates of the mysid Neomysis integer, collected in the Baltic Sea, after one-week exposure to different constant and fluctuating temperature regimes (5, 10, 15, 20°C and 9 ± 5, 14 ± 5°C, respectively). To investigate possible differences between sexes, thermal performance curves (TPCs) were established for female and male mysids based on ingestion rates measured at constant temperatures. TPCs of ingestion rates at constant temperatures differed between sexes, with female mysids showing a higher total ingestion rate as well as a higher thermal optimum compared to male mysids. Females showed reduced ingestion rates when exposed to fluctuating temperatures around their thermal optimum, whereas ingestion of male mysids was not reduced when exposed to fluctuating temperatures. The observed sex-specific differences might be related to potentially higher lipid and energy demands of the females. We suggest future studies should investigate males and females to improve our understanding about impacts of environmental variability on natural populations.
In coastal marine environments, physical and biological forces can cause dynamic pH fluctuations from microscale (diffusive boundary layer [DBL]) up to ecosystem‐scale (benthic boundary layer [BBL]). In the face of ocean acidification (OA), such natural pH variations may modulate an organism's response to OA by providing temporal refugia. We investigated the effect of pH fluctuations, generated by the brown alga Fucus serratus' biological activity, on the calcifying epibionts Balanus improvisus and Electra pilosa under OA. For this, both epibionts were grown on inactive and biologically active surfaces and exposed to (1) constant pH scenarios under ambient (pH 8.1) or OA conditions (pH 7.7), or (2) oscillating pH scenarios mimicking BBL conditions at ambient (pH 7.7–8.6) or OA scenarios (pH 7.4–8.2). Furthermore, all treatment combinations were tested at 10°C and 15°C. Against our expectations, OA treatments did not affect epibiont growth under constant or fluctuating (BBL) pH conditions, indicating rather high robustness against predicted OA scenarios. Furthermore, epibiont growth was hampered and not fostered on active surfaces (fluctuating DBL conditions), indicating that fluctuating pH conditions of the DBL with elevated daytime pH do not necessarily provide temporal refugia from OA. In contrast, results indicate that factors other than pH may play larger roles for epibiont growth on macrophytes (e.g., surface characteristics, macrophyte antifouling defense, or dynamics of oxygen and nutrient concentrations). Warming enhanced epibiont growth rates significantly, independently of OA, indicating no synergistic effects of pH treatments and temperature within their natural temperature range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.