The octopus is a marine animal whose body has no rigid structures. It has 8 arms composed of a peculiar muscular structure, named muscular hydrostat. The octopus arms provide it with both locomotion and grasping capabilities, thanks to the fact that their stiffness can change over a wide range and it can be controlled through combined contractions of the muscles. The muscular hydrostat can better be seen as a modifiable skeleton. Furthermore, the morphology the arms and the mechanical characteristics of their tissues are such that the interaction with the environment, namely water, is exploited to simplify control. Thanks to this effective mechanism of embodied intelligence, the octopus can control a very high number of degrees of freedom, with relatively limited computing resources. From these considerations, the octopus emerges as a good model for embodied intelligence and for soft robotics. The prototype of a robot arm has been built based on an artificial muscular hydrostat inspired to the muscular hydrostat of the Octopus vulgaris. The prototype presents the morphology of the biological model and the broad arrangement of longitudinal and transverse muscles. Actuation is obtained with cables (longitudinally) and with SMA springs (transversally). The robot arm combines contractions and it can show the basic movements of the octopus arm, like elongation, shortening, and bending
The octopus is an interesting model for the development of soft robotics, due to its high deformability, dexterity and rich behavioural repertoire. To investigate the principles of octopus dexterity, we designed an eight-arm soft robot and evaluated its performance with focused experiments. The OCTOPUS robot presented here is a completely soft robot, which integrates eight arms extending in radial direction and a central body which contains the main processing units. The front arms are mainly used for elongation and grasping, while the others are mainly used for locomotion. The robotic octopus works in water and its buoyancy is close to neutral. The experimental results show that the octopus-inspired robot can walk in water using the same strategy as the animal model, with good performance over different surfaces, including walking through physical constraints. It can grasp objects of different sizes and shapes, thanks to its soft arm materials and conical shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.