Magnetophoresis-the motion of magnetic particles under applied magnetic gradient-is a process of great interest in novel applications of magnetic nanoparticles and colloids. In general, there are two main different types of magnetophoresis processes: cooperative magnetophoresis (a fast process enhanced by particle-particle interactions) and noncooperative magnetophoresis (driven by the motion of individual particles in magnetic fields). In the case of noncooperative magnetophoresis, we have obtained a simple analytical solution which allows the prediction of the magnetophoresis kinetics from particle characterization data (size and magnetization). Our comparison with new experimental results shows good quantitative agreement. In addition, we show the existence of a universal curve onto which all experimental results should collapse after proper rescaling. The range of applicability of the analytical solution is discussed in light of the predictions of a magnetic aggregation model [Soft Matter 7, 2336].
In this work the use of Horizontal Low Gradient Magnetic Field (HLGMF) (<100T/m) for filtration, control and separation of synthesized magnetic nanoparticles (NPs) is investigated. The characteristics of the suspension, size and type of the NPs are considered and discussed. For these purposes, Fe 2 O 3 silica coated nanoclusters of about 150 nm are synthesized by co-precipitation, monodispersion and silica coating. SQUID, TEM, XRD, and ζ potential techniques were used to characterize the synthesized nanoclusters. An extensive magnetophoresis study was performed at different magnetophoretical conditions. Different reversible aggregation times were observed at different HLGMF, at each step of the synthesis route. In particular, differences of several orders of magnitude were observed when comparing citric acid modified NPs with silica coated nanoclusters . Reversible aggregation times are correlated to the properties of the NPs at different steps of synthesis route.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.