Bone mineral density (BMD) is the most important predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and East Asian ancestry. We tested the top-associated BMD markers for replication in 50,933 independent subjects and for risk of low-trauma fracture in 31,016 cases and 102,444 controls. We identified 56 loci (32 novel)associated with BMD atgenome-wide significant level (P<5×10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal-stem-cell differentiation, endochondral ossification and the Wnt signalling pathways. However, we also discovered loci containing genes not known to play a role in bone biology. Fourteen BMD loci were also associated with fracture risk (P<5×10−4, Bonferroni corrected), of which six reached P<5×10−8 including: 18p11.21 (C18orf19), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
Drs Ioannidis and Trikalinos had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs van Meurs and Trikalinos contributed equally to this article.
STEOPOROSIS IS A COMMONdisease characterized by reduced bone mass and an increased risk of fracture, which affects up to 30% of women and 12% of men at some point during life. Bone mineral density (BMD) is an important clinical predictor of fracture risk, and most of the variance in BMD is genetically determined. 1,2 Many other predictors of fragility fracture are also under genetic control, however, including ultrasound properties of bone, biochemical markers of bone turnover, and skeletal geometry. A wide variety of candidate genes have been investigated in relation to osteoporosis outcomes, but one of the most widely studied is the
Background
The Italian Society for Orthopaedics and Traumatology conceived this guidance—which is primarily addressed to Italian orthopedic surgeons, but should also prove useful to other bone specialists and to general practitioners—in order to improve the diagnosis, prevention, and treatment of osteoporosis and its consequences.Materials and methodsLiterature reviews by a multidisciplinary team.ResultsThe following topics are covered: the role of instrumental, metabolic, and genetic evaluations in the diagnosis of osteoporosis; appraisal of the risk of fracture and thresholds for intervention; general strategies for the prevention and treatment of osteoporosis (primary and secondary prevention); the pharmacologic treatment of osteoporosis; the setting and implementation of fracture liaison services for tertiary prevention. Grade A, B, and C recommendations are provided based on the main levels of evidence (1–3). Toolboxes for everyday clinical practice are provided.ConclusionsThe first up-to-date Italian guidelines for the primary, secondary, and tertiary prevention of osteoporosis and osteoporotic fractures are presented.
Current evidence suggests that estrogen plays a dominant role in determining bone mineral density (BMD) in men, and inactivating mutations in the aromatase CYP19 gene have been associated with low bone mass in young males. We previously reported an association between a TTTA repeat polymorphism in intron 4 of the CYP19 gene and osteoporotic risk in postmenopausal females. Here we explore the role of this polymorphism as a genetic determinant of BMD in a sample of elderly males who were recruited by direct mailing and followed longitudinally for 2 (n = 300) and 4 (n = 200) yr. Six different allelic variants, containing seven, eight, nine, 10, 11, and 12 TTTA repeats, were detected. There was a bimodal distribution of alleles, with two major peaks at seven and 11 repeats and a very low distribution of the nine-repeat allele. Men with a high-repeat genotype (>nine repeats) showed higher lumbar BMD values, lower bone turnover markers, higher estradiol levels, and a lower rate of BMD change than men with a low-repeat genotype (25), suggesting that the effect of CYP19 genotypes on bone may be masked by the increase in fat mass. Moreover, the high-repeat genotype was less represented, although not significantly, in the vertebral fracture group with respect to the nonvertebral fracture group. Functional in vitro analysis after incubation with [3H]-androstenedione showed a higher aromatase activity in fibroblasts from subjects with a high-repeat genotype than in fibroblasts from subjects with a low-repeat genotype. In conclusion, differences in estrogen levels due to polymorphism at the aromatase CYP19 gene may predispose men to increased age-related bone loss and fracture risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.