Abstract. Long-term effects of climate change on lakes globally will include a substantial modification in the thermal regime and the oxygen solubility of lakes, resulting in the alteration of ecosystem processes, habitats, and concentrations of critical substances. Recent efforts have led to the development of long-term model projections of climate change effects on lake thermal regimes and oxygen solubility. However, such projections
are hardly ever confronted with observations extending over multiple decades. Furthermore, global-scale forcing parameters in lake models present several limitations, such as the need of significant downscaling. In this study, the effects of climate change on thermal regime and oxygen solubility were analyzed in the four largest French peri-alpine lakes over 1850–2100. We tested several one-dimensional (1D) lake models' robustness for long-term variations based on up to 63 years of limnological data collected by the French Observatory of LAkes (OLA). Here, we evaluate the possibility of forcing mechanistic models by following the long-term
evolution of shortwave radiation and air temperature while providing
realistic seasonal trends for the other variables for which local-scale
downscaling often lacks accuracy. Based on this approach, MyLake, forced by
air temperatures and shortwave radiations, predicted accurately the
variations in the lake thermal regime over the last 4 to 6 decades,
with RMSE < 1.95 ∘C. Over the previous 3 decades, water temperatures have increased by 0.46 ∘C per decade (±0.02 ∘C) in the epilimnion and 0.33 ∘C per decade (±0.06 ∘C) in the hypolimnion. Concomitantly and due to thermal change, O2 solubility has decreased by −0.104 mg L−1 per decade (±0.005 mg L−1) and −0.096 mg L−1 per decade (±0.011 mg L−1) in the epilimnion and hypolimnion, respectively. Based on the shared socio-economic pathway SSP370 of the Intergovernmental Panel on Climate Change (IPCC), peri-alpine lakes could face an increase of 3.80 ∘C (±0.20 ∘C) in the next 70 years, accompanied by a decline of 1.0 mg L−1 (±0.1 mg L−1) of O2 solubility. Together, these results highlight a critical alteration in lake thermal and oxygen conditions in the coming decades, and a need for a better integration of long-term lake observatories data and lake models to anticipate climate
effects on lake thermal regimes and habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.