Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion.
Sil.G. helped in the execution of the mouse experiments; B.F., M.M. and Gr.P. performed 16s rRNA metagenomic analysis; L.M. and W.V. designed and carried out histological analyses. G.N. performed ex-vivo stimulation of human colonic mucosa experiments; A.B. performed confocal analyses; J.T. executed metabolomic analyses; B.O. helped in the execution of in vitro experiments; K.A. and K.H. isolated F.PB1 and carried out GF experiments; S.A. and S.G. set up F. PB1 growth and supernatant production; S.C. set up H. biformis and L. lactis growth and supernatant production; G.F. performed FACS analyses; F.A. and N.S. performed phylogenetic analysis and human CRC dataset interrogation; G.P. participated with ideas and results interpretation; M.R. ideated the study, coordinated the work, and wrote the manuscript.
Cancer develops in a complex microenvironment comprising cancer cells, stromal cells, and host immune cells with their soluble products. The counteracting host-protective and tumor-promoting roles of different immune cell populations have been elegantly clarified in the last decade by pertinent genetically modified mouse models. Among cells with a potential role in cancer immunity, PDCs might represent important players as a result of their capacity to bring together innate and adaptive immunity. This review summarizes current knowledge about the role of PDCs in cancer immunity. PDCs have been documented in primary and metastatic human neoplasms; however, the clinical significance of this finding is still unknown. Once into the tumor bed, PDCs can be hijacked by the tumor microenvironment and lose their propensity to produce the required amount of endogenous I-IFN. However, when properly reprogrammed (i.e., by TLR agonists), PDCs might mediate tumor rejection in a clinical setting. Tumor rejection, at least partially, is driven by I-IFN and seems to require a cross-talk with other innate immune cells, including IFN DCs. The latter evidence, although still limited to skin cancers, can provide a leading model for developing adjuvant immune therapy for other neoplasms. To this end, the generation of appropriate mouse models to modulate the frequency and activation state of murine PDCs will also be of remarkable importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.