Neuropathic pain affects millions of people worldwide causing substantial disability and greatly impairing quality of life. Commonly used analgesics or anti-hyperalgesic compounds are generally characterized by limited therapeutic outcomes. Thus, there is a compelling need for novel therapeutic strategies able to prevent nervous tissue alterations responsible for chronic pain. The α9α10 nAChR antagonist α-conotoxin RgIA (RgIA), a peptide isolated from the venom of a carnivorous cone snail, induces relief in both acute and chronic pain models. To evaluate potential disease-modifying effects of RgIA, the compound was given to rats following chronic constriction injury (CCI) of the sciatic nerve. Two or 10 nmol RgIA injected intramuscularly once a day for 14 days reduced the painful response to suprathreshold stimulation, increased pain threshold to non-noxious stimuli, and normalized alterations in hind limb weight bearing. Histological analysis of the sciatic nerve revealed that RgIA prevented CCI-induced decreases of axonal compactness and diameter, loss of myelin sheath and decreases in the fiber number. Moreover, RgIA significantly reduced edema and inflammatory infiltrate, including a decrease of CD86+ macrophages. In L4–L5 dors the inflammatory infiltrate consistent with a disease-modifying effect. In the dorsal horn of the spinal cord, RgIA prevented CCI-induced activation of microglia and astrocytes. These data suggest that RgIA-like compounds may represent a novel class of therapeutics for neuropathic pain that protects peripheral nervous tissues as well as prevents central maladaptive plasticity by inhibiting glial cell activation.
a b s t r a c tHydrogen sulfide (H 2 S) is a crucial signaling molecule involved in several physiological and pathological processes. Nonetheless, the role of this gasotransmitter in the pathogenesis and treatment of neuropathic pain is controversial.The aim of the present study was to investigate the pain relieving profile of a series of slow releasing H 2 S donors (the natural allyl-isothiocyanate and the synthetics phenyl-and carboxyphenylisothiocyanate) in animal models of neuropathic pain induced by paclitaxel or oxaliplatin, anticancer drugs characterized by a dose-limiting neurotoxicity. The potential contribution of Kv7 potassium channels modulation was also studied.Mice were treated with paclitaxel (2.0 mg kg À1) i.p. on days 1, 3, 5 and 7; oxaliplatin (2.4 mg kg À1) was administered i.p. on days 1e2, 5e9, 12e14. Behavioral tests were performed on day 15. In both models, single subcutaneous administrations of H 2 S donors (1.33, 4.43, 13.31 mmol kg À1 ) reduced the hypersensitivity to cold non-noxious stimuli (allodynia-related measurement). The prototypical H 2 S donor NaHS was also effective. Activity was maintained after i.c.v. administrations. On the contrary, the Slacking molecule allyl-isocyanate did not increase pain threshold; the H 2 S-binding molecule hemoglobin abolished the pain-relieving effects of isothiocyanates and NaHS. The anti-neuropathic properties of H 2 S donors were reverted by the Kv7 potassium channel blocker XE991. Currents carried by Kv7.2 homomers and Kv7.2/Kv7.3 heteromers expressed in CHO cells were potentiated by H 2 S donors.Sistemically-or centrally-administered isothiocyanates reduced chemotherapy-induced neuropathic pain by releasing H 2 S. Activation of Kv7 channels largely mediate the anti-neuropathic effect.
Carbon monoxide (CO) is a gas endogenously produced in humans, reported to exhibit anti-inflammatory and cytoprotective effects at low concentration. In this context, CO releasing molecules (CORMs) are attracting enormous interest. Herein, we report a series of small-molecule hybrids consisting of a carbonic anhydrase (CA; EC 4.2.1.1) inhibitor linked to a CORM tail section (CAI−CORMs). All compounds were screened in vitro for their inhibition activity against the human (h) CA I, II, IV, IX, and XII isoforms. On selected CAI−CORM hybrids, the CO releasing properties were evaluated, along with their pain-relieving effect, in a model of rheumatoid arthritis. One CAI− CORM hybrid (5b) induced a higher pain-relieving effect compared to the one exerted by the single administration of CAI (5a) and CORM (15b) fragments, shedding light on the possibility to enhance the pain relief effect of CA inhibitors inserting a CO releasing moiety on the same molecular scaffold.
The beneficial effects of isothiocyanate-based compounds, as well as their safety, have been shown in neuropathological disorders, such as neuropathic pain. Aim of the present work was to study the efficacy of the glucosinolate glucoraphanin (GRA) and the derived isothiocyanate sulforaphane (SFN), secondary metabolites occurring exclusively in Brassicales, on chemotherapy-induced neuropathic pain. Mice were repeatedly treated with oxaliplatin (2.4 mg kg ip) for 14 days to induce neuropathic pain. GRA and SFN effects were evaluated after a single administration on Day 15 or after a daily repeated oral and subcutaneous treatment starting from the first day of oxaliplatin injection until the 14 day. Single subcutaneous and oral administrations of GRA (4.43-119.79 μmol kg ) or SFN (1.33-13.31 μmol kg ) reduced neuropathic pain in a dose-dependent manner. The repeated administration of GRA and SFN (respectively 13.31 and 4.43 μmol kg ) prevented the chemotherapy-induced neuropathy. The co-administration of GRA and SFN in mixture with the H S binding molecule, haemoglobin, abolished their pain-relieving effect, which was also reverted by pretreating the animals with the selective blocker of Kv7 potassium channels, XE991. GRA and SFN reduce neuropathic pain by releasing H S and modulating Kv7 channels and show a protective effect on the chemotherapy-induced neuropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.