BackgroundHeritable Thoracic Aortic Disorders (H-TAD) may present clinically as part of a syndromic entity or as an isolated (nonsyndromic) manifestation. About one dozen genes are now available for clinical molecular testing. Targeted single gene testing is hampered by significant clinical overlap between syndromic H-TAD entities and the absence of discriminating features in isolated cases. Therefore panel testing of multiple genes has now emerged as the preferred approach. So far, no data on mutation detection rate with this technique have been reported.MethodsWe performed Next Generation Sequencing (NGS) based screening of the seven currently most prevalent H-TAD-associated genes (FBN1, TGFBR1/2, TGFB2, SMAD3, ACTA2 and COL3A1) on 264 samples from unrelated probands referred for H-TAD and related entities. Patients fulfilling the criteria for Marfan syndrome (MFS) were only included if targeted FBN1 sequencing and MLPA analysis were negative.ResultsA mutation was identified in 34 patients (13%): 12 FBN1, one TGFBR1, two TGFBR2, three TGFB2, nine SMAD3, four ACTA2 and three COL3A1 mutations. We found mutations in FBN1 (N = 3), TGFBR2 (N = 1) and COL3A1 (N = 2) in patients without characteristic clinical features of syndromal H-TAD. Six TAD patients harboring a mutation in SMAD3 and one TAD patient with a TGFB2 mutation fulfilled the diagnostic criteria for MFS.ConclusionNGS based H-TAD panel testing efficiently reveals a mutation in 13% of patients. Our observations emphasize the clinical overlap between patients harboring mutations in syndromic and nonsyndromic H-TAD related genes as well as within syndromic H-TAD entities, justifying a widespread application of this technique.Electronic supplementary materialThe online version of this article (doi:10.1186/s13023-014-0221-6) contains supplementary material, which is available to authorized users.
Brittle cornea syndrome (BCS) is a rare autosomal recessive disorder characterized by corneal thinning and fragility, leading to corneal rupture, the main hallmark of this disorder. Non-ocular symptoms include not only hearing loss but also signs of connective tissue fragility, placing it in the Ehlers-Danlos syndrome (EDS) spectrum.It is caused by biallelic pathogenic variants in ZNF469 or PRDM5, which presumably encode transcription factors for extracellular matrix components. We report the clinical and molecular features of nine novel BCS families, four of which harbor variants in ZNF469 and five in PRDM5. We also performed a genotype-and phenotype-oriented literature overview of all (n = 85) reported patients with ZNF469 (n = 53) and PRDM5 (n = 32) variants. Musculoskeletal findings may be the main reason for referral and often raise suspicion of another heritable connective tissue disorder, such as kyphoscoliotic EDS, osteogenesis imperfecta, or Marfan syndrome, especially when a corneal rupture has not yet occurred. Our findings highlight the multisystemic nature of BCS and validate its inclusion in the EDS classification. Importantly, gene panels for heritable connective tissue disorders should include ZNF469 and PRDM5 to allow for timely diagnosis and appropriate preventive measures for this rare condition.
Cardiovascular diseases during pregnancy account for significant morbidity and mortality, with aortic aneurysms, complicated by aortic dissection or rupture, being high on the list of underlying causes in this category. Correct knowledge of the diagnosis, risks and treatment is mandatory to improve the outcome and save lives. In this article, the authors aim to provide an overview of the underlying causes and risk factors for aortic aneurysms and dissections during pregnancy, while presenting the ways of preventing and treating these conditions. Although an important focus lies on the proximal part of the aorta due to it bearing the greatest risk for complications and being more frequently implicated in aortic disease in younger subjects, many aspects on the etiology and underlying diseases also apply to the other parts of the vessel.
Background Few studies demonstrate delayed recovery after exercise in children and adults with heart disease. We assess the recovery patterns of gas exchange parameters and heart rate (HR) in children with repaired Tetralogy of Fallot (rToF) compared to healthy peers and investigate the correlation with ventricular function and QRS duration. Methods 45 children after rToF and 45 controls performed a maximal incremental cardiopulmonary exercise test. In the subsequent recovery period, patterns of VO2, VCO2 and HR were analysed. Half-life time (T1/2) of the exponential decay and drop per minute (Recmin) were compared between groups. In the rToF group, correlations were examined between the recovery parameters and QRS-duration and ventricular function, described by fractional shortening (FS) and tricuspid annular plane systolic excursion (TAPSE) measured at baseline prior to exercise. Results Recovery of VO2 and VCO2 was delayed in rToF patients, half-life time values were higher compared to controls (T1/2VO2 52.51 ±11.29 s vs. 44.31 ± 10.47 s; p = 0.001 and T1/2VCO2 68.28 ± 13.84 s vs. 59.41 ± 12.06 s; p = 0.002) and percentage drop from maximal value was slower at each minute of recovery (p<0.05). Correlations were found with FS (T1/2VO2: r = -0.517; p<0.001; Rec1minVO2: r = -0.636, p<0.001; Rec1minVCO2: r = -0.373, p = 0.012) and TAPSE (T1/2VO2: r = -0.505; p<0.001; Rec1minVO2: r = -0.566, p<0.001; T1/2VCO2: r = -0.466; p = 0.001; Rec1minVCO2: r = -0.507, p<0.001), not with QRS-duration. No difference was found in HR recovery between patients and controls. Conclusions Children after rToF show a delayed gas exchange recovery after exercise. This delay correlates to ventricular function, demonstrating its importance in recovery after physical activity.
BackgroundMitral valve prolapse syndrome (MVPS) and MASS phenotype (MASS) are Marfan-like syndromes that exhibit aortic dilatation and mitral valve prolapse. Unlike in Marfan syndrome (MFS), the presence of ectopia lentis and aortic aneurysm preclude diagnosis of MVPS and MASS. However, it is unclear whether aortic dilatation and mitral valve prolapse remain stable in MVPS or MASS or whether they progress like in MFS.MethodsThis retrospective longitudinal observational study examines clinical characteristics and long-term prognosis of 44 adults with MVPS or MASS (18 men, 26 women aged 38 ± 17 years) as compared with 81 adults with Marfan syndrome (MFS) with similar age and sex distribution. The age at final contact was 42 ± 15 years with mean follow-up of 66 ± 49 months.ResultsAt baseline, ectopia lentis and aortic sinus aneurysm were absent in MVPS and MASS, and systemic scores defined by the revised Ghent nosology were lower than in MFS (all P < .001). Unlike in MFS, no individual with MVPS and MASS developed aortic complications (P < .001). In contrast, the incidence of endocarditis (P = .292), heart failure (P = .644), and mitral valve surgery (P = .140) was similar in all syndromes. Cox regression analysis identified increased LV end-diastolic (P = .013), moderate MVR (P = .019) and flail MV leaflet (P = .017) as independent predictors of mitral valve surgery.ConclusionsThe study provides evidence that MVPS and MASS are Marfan-like syndromes with stability of aortic dilatation but with progression of mitral valve prolapse. Echocardiographic characteristics of mitral valve disease rather than the type of syndrome, predict clinical progression of mitral valve prolapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.