Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio) offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.
Mucormycosis is an emerging fungal infection that is often lethal due to the ineffectiveness of current therapies. Here, we have studied the first stage of this infection—the germination of Mucor circinelloides spores inside phagocytic cells—from an integrated transcriptomic and functional perspective. A relevant fungal gene network is remodeled in response to phagocytosis, being enriched in crucial functions to survive and germinate inside the phagosome, such as nutritional adaptation and response to oxidative stress. Correspondingly, the phagocytic cells induced a specific proinflammatory and apoptotic response to the pathogenic strain. Deletion of fungal genes encoding putative transcription factors (atf1, atf2, and gcn4), extracellular proteins (chi1 and pps1), and an aquaporin (aqp1) revealed that these genes perform important roles in survival following phagocytosis, germination inside the phagosome, and virulence in mice. atf1 and atf2 play a major role in these pathogenic processes, since their mutants showed the strongest phenotypes and both genes control a complex gene network of secondarily regulated genes, including chi1 and aqp1. These new insights into the initial phase of mucormycosis define genetic regulators and molecular processes that could serve as pharmacological targets. IMPORTANCE Mucorales are a group of ancient saprophytic fungi that cause neglected infectious diseases collectively known as mucormycoses. The molecular processes underlying the establishment and progression of this disease are largely unknown. Our work presents a transcriptomic study to unveil the Mucor circinelloides genetic network triggered in fungal spores in response to phagocytosis by macrophages and the transcriptional response of the host cells. Functional characterization of differentially expressed fungal genes revealed three transcription factors and three extracellular proteins essential for the fungus to survive and germinate inside the phagosome and to cause disease in mice. Two of the transcription factors, highly similar to activating transcription factors (ATFs), coordinate a complex secondary gene response involved in pathogenesis. The significance of our research is in characterizing the initial stages that lead to evasion of the host innate immune response and, in consequence, the dissemination of the infection. This genetic study offers possible targets for novel antifungal drugs against these opportunistic human pathogens.
PCR is a useful tool for the detection of congenital CD, and the treatment of infected women of childbearing age seems to be useful for preventing vertical transmission.
The order Mucorales is a group of ancient fungi with limited tools for gene manipulation. The main consequence of this manipulation unwillingness is the limited knowledge about its biology compared to other fungal groups. However, the emerging of mucormycosis, a fungal infection caused by Mucorales, is attracting the medical spotlight in recent years because the treatments available are not efficient in reducing the high mortality associated with this disease. The result of this renewed interest in Mucorales and mucormycosis is an extraordinarily productive effort to unveil their secrets during the last decade. In this review, we describe the most compelling advances related to the genetic study of virulence factors, pathways, and molecular mechanisms developed in these years. The use of a few genetic study models has allowed the characterization of virulence factors in Mucorales that were previously described in other pathogens, such as the uptake iron systems, the mechanisms of dimorphism, and azole resistances. More importantly, recent studies are identifying new genes and mechanisms controlling the pathogenic potential of Mucorales and their interactions with the host, offering new alternatives to develop specific strategies against mucormycosis.Genes 2020, 11, 317 2 of 17 Mucorales are a neglected phylogenetic group compared to others such as Ascomycetes and Basidiomycetes. The limited knowledge about the genetics of Mucorales is a consequence of the restricted tools for gene manipulation, as most of them cannot be transformed. However, DNA can be introduced in Mucor circinelloides, Rhizopus delemar, and Rhizopus oryzae [6,7]. These genetic models and the alarm raised for the emerging cases of mucormycosis are attracting the interest of the scientific community. Thus, the last decade has produced several studies related to genes, pathways, and mechanisms showing a direct connection with virulence in Mucorales [8,9]. One of the most studied mechanisms has been the process of gene silencing or RNA interfering (RNAi) in M. circinelloides [10]. After the dissection of the gene silencing machinery, the knowledge of this mechanism allowed the unveiling of a new and particular type of antifungal resistance mediated by temporal epigenetic changes [11]. In addition, the applied use of gene silencing enabled the development of functional genomics techniques, which have been used for the identification of several new virulence factors [12]. Along with silencing, gene disruption driven by homologous recombination has also allowed the study of the particular role in M. circinelloides of virulence factors identified in other fungi, such as the role of a high-affinity iron uptake mechanism, the protein family of CotH, and the calcineurin pathway. Moreover, the implementation of the new omics technologies has produced a long list of candidate genes not previously related to virulence, becoming promising targets for the development of new treatments against mucormycosis. Finally, the diversity of molecular and cell methodolo...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.