The tropical Andes are characterized by extreme topographic and climatic complexity, which has likely contributed to their outstanding current species diversity, composed of many range‐restricted species. However, little is known about how the distribution and abundance of highly mobile organisms, like long‐distance migratory birds, varies across different land covers, elevations, and climatic conditions within the Andes. We conducted 1,606 distance‐sampling point counts across the Colombian Andes, spanning elevations from 253 to 3,708 m, a range of precipitation regimes and representative land covers. We then employed a novel application of a multispecies hierarchical modeling approach to evaluate how elevation, local land cover, aboveground woody biomass, cloud cover, precipitation, and seasonality in precipitation shape the abundance of the migratory land bird community in the Andes. We detected 1,824 individuals of 29 species of migratory land birds, six of which were considered incidental in our study region. We modeled the abundance of the remaining 23 species, while considering observer and time of day effects on detectability. We found that both elevation and land cover had an overriding influence on the abundance of migratory species across the Andes, with strong evidence for a mid‐elevation peak in abundance, and species‐specific responses to both variables. As a community, migratory birds had the highest mean abundance in shade coffee plantations, secondary forest, and mature forest. Aboveground woody biomass did not affect the abundance of all species as a group, but a few showed strong responses to this variable. Contrary to predictions of a positive correlation between abundance and precipitation, we found no evidence for community‐level responses to precipitation, aside for a weak tendency for birds to select areas with intermediate levels of precipitation. This novel use of a multispecies model sheds new light on the mechanisms shaping the winter distribution of migratory birds and highlights the importance of elevation and land cover types over climatic variables in the context of the Colombian Andes.
Studying processes acting on differentiated populations upon secondary contact, such as hybridization, is important to comprehensively understand how species are formed and maintained over time. However, avian speciation studies in the tropical Andes have largely focused on the role of topographic and ecological barriers promoting divergence in allopatry, seldom examining hybridization and introgression. We describe a hybrid zone involving 2 closely related Andean warblers (Parulidae), the Golden-fronted Redstart (Myioborus ornatus), and the Spectacled Redstart (Myioborus melanocephalus). Geographic ranges of these species abut near the Colombia-Ecuador border and many specimens from the region exhibit intermediate phenotypes, but a formal description of phenotypic variation in the contact zone was heretofore lacking. We collected specimens across a transect encompassing the area where ranges abut and areas where only “pure” parental phenotypes of M. ornatus chrysops and M. melanocephalus ruficoronatus occur. We described variation in plumage traits including patterns of head and ventral coloration and tail markings based on 321 specimens. To describe genetic variation in the contact zone and over a broader phylogeographic context, we used sequences of the mitochondrial ND2 gene for 219 individuals across the transect and the entire range of both species, including all subspecies, from Venezuela to Bolivia. We documented a hybrid zone ~200 km wide based on head coloration, where intermediate plumage phenotypes are most common and “pure” forms do not overlap geographically, consistent with extensive hybridization. Across the range of the M. ornatus–M. melanocephalus complex, mitochondrial genetic structure was shallow, with genetic breaks only coinciding clearly with one topographic feature. Such a low genetic structure is striking given the high diversity in plumage phenotypes and the current taxonomy of the group. Our phenotypic data suggest that barriers to hybridization are not strong, and allow us to postulate hypotheses to be tested using forthcoming genomic data.
Why do some flowers have stamens of different shapes and sizes? Focusing on a group of Neotropical flowering plants, Dellinger et al. tackled this question and found that the evolution of heteranthery, contrary to the predominant view, is not strictly related to pollen-reward pollination and selection for division of labor between stamens. Moreover, they found support for the idea that selection for staggered pollen release might lead to heteranthery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.