Purpose:The organic cation transporter OCT-1mediates active transport of imatinib.We recently showed that low OCT-1activity is a major contributor to suboptimal response in chronic myeloid leukemia (CML) patients treated with imatinib. The relevance of OCT-1activity and efflux pumps in determining intracellular uptake and retention (IUR) of dasatinib was assessed. Experimental Design: The effect of OCT inhibitors on [ 14 C]dasatinib and [ 14 C]imatinib IUR was compared using peripheral blood mononuclear cells from newly diagnosed CML patients. The role of efflux transporters was studied using ABCB1-and ABCG2-overexpressing cell lines and relevant inhibitors. Results: Unlike imatinib, there was no significant difference in the dasatinib IUR at 37jC and 4jC (P = 0.8), and OCT-1 inhibitors including prazosin did not reduce dasatinib IUR significantly. In CML mononuclear cells, prazosin inhibitable IUR was significantly higher for imatinib than dasatinib (6.38 versus 1.48 ng/200,000 cells; P = 0.002; n = 11). Patients with high OCT-1 activity based on their imatinib uptake had IC 50 dasatinib values equivalent to patients with low OCT-1acti-vity. Dasatinib IUR was significantly lower in ABCB1-overexpressing cell lines compared with parental cell lines (P < 0.05). PSC833 (ABCB1inhibitor) significantly increased the dasatinib IUR (P < 0.05) and reduced IC 50 dasatinib (from 100 to 8 nmol/L) in K562-DOX cell line. The ABCG2 inhibitor Ko143 significantly increased dasatinib IUR in ABCG2-overexpressing cell lines and reduced IC 50 dasatinib . Conclusion: Unlike imatinib, dasatinib cellular uptake is not significantly affected by OCT-1 activity, so that expression and function of OCT-1 is unlikely to affect response to dasatinib. Dasatinib is a substrate of both efflux proteins, ABCB1and ABCG2.
The efflux transporters adenosine triphosphate (ATP)-binding cassette (ABC)B1 and ABCG2 have been demonstrated to interact with the tyrosine kinase inhibitors (TKIs) imatinib, nilotinib, and dasatinib. However, although some studies conclude that TKIs are substrates of one or both transporters, other studies demonstrate only an inhibitory function. This variation is probably due to differences in the concentration of TKIs assayed and the experimental systems used. This article examines the evidence for clinically relevant interactions between three currently approved TKIs and ABCB1/ABCG2.
Tyrosine kinase inhibitor (TKI) therapy results in excellent responses in the majority of patients with chronic myeloid leukaemia. First-line imatinib treatment, with selective switching to nilotinib when patients fail to meet specific molecular targets or for imatinib intolerance, results in excellent overall molecular responses and survival. However, this strategy is less effective in cases of primary imatinib resistance; moreover, 25% of patients develop secondary resistance such that 20-35% of patients initially treated with imatinib will eventually experience treatment failure. Early identification of these patients is of high clinical relevance. Since the drug efflux transporter ABCB1 has previously been implicated in TKI resistance, we determined if early increases in ABCB1 mRNA expression (fold change from diagnosis to day 22 of imatinib therapy) predict for patient response. Indeed, patients exhibiting a high fold rise (⩾2.2, n=79) were significantly less likely to achieve early molecular response (BCR-ABL1 ⩽10% at 3 months; P=0.001), major molecular response (P<0.0001) and MR4.5 (P<0.0001). Additionally, patients demonstrated increased levels of ABCB1 mRNA before the development of mutations and/or progression to blast crisis. Patients with high fold rise in ABCB1 mRNA were also less likely to achieve major molecular response when switched to nilotinib therapy (49% vs 82% of patients with low fold rise). We conclude that early evaluation of the fold change in ABCB1 mRNA expression may identify patients likely to be resistant to first- and second-generation TKIs and who may be candidates for alternative therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.