Background Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates. Methods Nonhuman primates received 10 or 100 μg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens. Results The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID 50 ) geometric mean titers of 501 in the 10-μg dose group and 3481 in the 100-μg dose group. Vaccination induced type 1 helper T-cell (Th1)–biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-μg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. Conclusions Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.)
Consistent, high-level, vaccine-induced protection against human malaria has only been achieved by inoculation of Plasmodium falciparum (Pf) sporozoites (SPZ) by mosquito bites. We report that the PfSPZ Vaccine--composed of attenuated, aseptic, purified, cryopreserved PfSPZ--was safe and well tolerated when administered four to six times intravenously (IV) to 40 adults. Zero of six subjects receiving five doses and three of nine subjects receiving four doses of 1.35 × 10(5) PfSPZ Vaccine and five of six nonvaccinated controls developed malaria after controlled human malaria infection (P = 0.015 in the five-dose group and P = 0.028 for overall, both versus controls). PfSPZ-specific antibody and T cell responses were dose-dependent. These data indicate that there is a dose-dependent immunological threshold for establishing high-level protection against malaria that can be achieved with IV administration of a vaccine that is safe and meets regulatory standards.
In 2015 there were an estimated 214 million clinical cases and 438,000 deaths due to malaria 1 , primarily caused by Pf in children in sub-Saharan Africa. A highly effective vaccine is urgently needed to prevent malaria in individuals and to facilitate elimination of malaria from defined geographic areas. To achieve these goals, we established an interim target of >85% sterile protection against Pf infection for >6 months 2 .There is currently no malaria subunit vaccine that approaches this level of protection. The most extensively studied candidate malaria vaccine, RTS,S (a subunit vaccine based on the Pf circumsporozoite protein (PfCSP)), confers sterilizing protection against controlled human malaria infection (CHMI) in about 22% of healthy malarianaive adults 5 months after vaccination 3 . In a phase 3 field study, the efficacy of RTS,S against clinical malaria was 26% and 36% in young infants and children between the ages of 5 and 17 months, respectively, through 38-48 months of follow-up following a fourdose regimen on a 0-, 1-, 2-, and 20-month schedule 4 . Therefore, it is necessary to investigate alternative vaccination strategies that confer long-lived sterilizing protection 5,6 .Sustained sterilizing immunity against the pre-erythrocytic stages of Pf has been observed in humans immunized by wholeparasite approaches using mosquitoes for vaccination 7,8 . In a study An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 10 5 PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21-25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks.To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-g-producing CD8 T cells were present at ~100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.
A single injection induced HIV-1 antigen-specific CD4(+) T cell, CD8(+) T cell, and antibody responses in the majority of vaccine recipients. This multiclade rAd5 HIV-1 vaccine is now being evaluated in combination with a multiclade HIV-1 DNA plasmid vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.