An overview of the state of the art concerning with earlier approaches to titration in redox systems is given in this chapter, in which an overview on redox bibliography has also been undertaken. Titration error has been the subject of a variety of excellent papers, but the number of papers dealing with titration error in redox titrations is scarce. However, a single hyperbolic sine expression for the titration error in donor/acceptor titration of displacement and electronic transference reactions is derived in this chapter. The titration error expression is applicable to symmetrical redox reactions, that is to say, those in which no polynuclear species are involved in the equilibria. The donor versus acceptor particle notation is chosen to accentuate the analogy with that used in the description of acids and bases following the steps given by the French School and other recognized authors (Budevsky, Butler, Charlot, Gauguin, Inczedy, Monnier, Rosset). A diagram for the titration error in function of the difference between the end and equivalence point (pX) is drawn in order to facilitate the graphical calculation of titration error. A detailed error analysis concerning with the propagation of systematic and random error propagation in the titration error is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.