We previously have demonstrated that oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), a component of minimally modified low density lipoprotein (MM-LDL), activates endothelial cells to bind monocytes. 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine (PGPC), which are present in OxPAPC, MM-LDL, and atherosclerotic lesions, were shown to have a major role in the activation of endothelial cells. We now demonstrate that these two highly similar molecules have dramatically different effects on leukocyte endothelial interactions. POVPC is a potent regulator of monocyte-specific endothelial interactions. Treatment of endothelial cells with POVPC increased monocyte binding by inducing the surface expression of the connecting segment 1 domain of fibronectin; no increase in neutrophil binding was observed. In addition, POVPC strongly inhibited lipopolysaccharide-mediated induction of neutrophil binding and expression of E-selectin protein and mRNA. This inhibition was mediated by a protein kinase A-dependent pathway, resulting in down-regulation of NF-B-dependent transcription. In contrast, PGPC induced both monocyte and neutrophil binding and expression of E-selectin and vascular cell adhesion molecule 1. We present evidence to suggest that the two phospholipids act by different novel receptors present in Xenopus laevis oocytes and that POVPC, but not PGPC, stimulates a cAMP-mediated pathway. At concentrations equal to that present in MM-LDL, the effect of POVPC dominates and inhibits PGPC-induced neutrophil binding and Eselectin expression in endothelial cells. In summary, our data provide evidence that both POVPC and PGPC are important regulators of leukocyte-endothelial interactions and that POVPC may play a dominant role in a number of chronic inflammatory processes where oxidized phospholipids are known to be present.
Abstract-Atherosclerosis can be viewed in part as an inflammatory disease process and may therefore be susceptible to manipulation of the immune state. Interleukin 10 (IL-10) is an inhibitory cytokine produced by activated lymphocytes and monocytes. These studies present evidence that IL-10 can inhibit minimally oxidized LDL (MM-LDL)-induced monocyte-endothelium interaction as well as inhibit atherosclerotic lesion formation in mice fed an atherosclerotic diet. Pretreatment of human aortic endothelial cells (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.