To understand the diversity of ways in which natural materials interact with light, it is important to consider how their reflectance changes with the angle of illumination or viewing and to consider wavelengths beyond the visible. Efforts to characterize these optical properties, however, have been hampered by heterogeneity in measurement techniques, parameters and terminology. Here, we propose a standardized set of measurements, parameters and terminology to describe the optical properties of natural objects based on spectrometry, including angle-dependent effects, such as iridescence and specularity. We select a set of existing measurements and parameters that are generalizable to any wavelength range and spectral shape, and we highlight which subsets of measures are relevant to different biological questions. As a case study, we have applied these measures to 30 species of Christmas beetles, in which we observed previously unrealized diversity in visible and near-infrared reflectance. As expected, reflection of short wavelengths was associated with high spectral purity and angle dependence. In contrast to simple, artificial structures, iridescence and specularity were not strongly correlated, highlighting the complexity and modularity of natural materials. Species did not cluster according to spectral parameters or genus, suggesting high lability of optical properties. The proposed standardization of measures and parameters will improve our understanding of biological adaptations for manipulating light by facilitating the systematic comparison of complex optical properties, such as glossy or metallic appearances and visible or near-infrared iridescence.
Plant organs including flowers and leaves typically have a variety of different micro-structures present on the epidermal surface. These structures can produce measurable optical effects with viewing angle including shifts in peak reflectance and intensity; however, these different structures can also modulate hydrophobic properties of the surfaces. For some species optical effects have been proposed to act as signals to enhance pollination interactions, whilst the ability to efficiently shed water provides physiological advantages to plants in terms of gas exchange and reducing infections. Currently, little is known about epidermal surface structure of flowering plants in the Southern Hemisphere, and how micro-surface may be related with either hydrophobicity or visual signalling. We measured four Australian native species and two naturalised species using a combination of techniques including SEM imaging, spectral sampling with a goniometer and contact angle measurements. Spectral data were evaluated in relation to published psychophysics results for important pollinators and reveal that potential visual changes, where present, were unlikely to be perceived by relevant pollinators. Nevertheless, hydrophobicity also did not simply explain petal surfaces as similar structures could in some cases result in very different levels of water repellency. The variety and complexity in micro-surfaces (also referred to as micro-sculpture) present on the epidermal surface of different plant organs such as leaves and flowers has long been recognised by plant scientists for taxonomic identification 1. From a sample of about 5,000 plant species including Angiosperms and Gymnosperms, Bartholott identified four main characteristics defining a plant micro-surface: cell morphology, relief of the cell wall, waxes and epicuticular secretions, and multi cellular structures including trichomas (hairs) and glands 1,2. Much effort has been devoted to sample and characterise these microstructures using different microscopy techniques including scanning electron microscopy (SEM), and transmission electron microscopy (TEM) for taxonomic purposes 3 ; however, the underlying cause of such a morphological diversity still remains unclear. One of the first explanations for the origin and diversity of epidermal micro-surfaces is water repellency 4. Excess of liquid due to rainfall or dew can be detrimental to the plant as it reduces photosynthetic activity, promotes the development and spread of fungal infections, facilitates pollutant deposition, and accelerates foliage nutrient leaching 4-6. Considering the negative effects of excess water on plant surface, features that enhance water repellency would be assumed to be favoured over those that do not 4 , and it is expected that different adaptations
Iridescence is a phenomenon whereby the hue of a surface changes with viewing or illumination angle. Many animals display iridescence but it currently remains unclear whether relevant observers process iridescent color signals as a complex collection of colors (spatial variation), or as moving patterns of colors and shapes (temporal variation). This is important as animals may use only the spatial or temporal component of the signal, although this possibility has rarely been considered or tested. Here, we investigated whether honey bees could separate the temporal and spatial components of iridescence by training them to discriminate between iridescent disks and photographic images of the iridescent patterns presented by the disks. Both stimuli therefore contained spatial color variation, but the photographic stimuli do not change in hue with varying angle (no temporal variation). We found that individual bee observers could discriminate the variable patterns of iridescent disks from static photographs during unrewarded tests. Control experiments showed that bees reliably discriminated iridescent disks from control silver disks, showing that bees were processing chromatic cues. These results suggest that honey bees could selectively choose to attend to the temporal component of iridescent signals to make accurate decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.