Undulatory swimming represents an ideal behavior to investigate locomotion control and the role of the underlying central and peripheral components in the spinal cord. Many vertebrate swimmers have central pattern generators and local pressure-sensitive receptors that provide information about the surrounding fluid. However, it remains difficult to study experimentally how these sensors influence motor commands in these animals. Here, using a specifically designed robot that captures the essential components of the animal neuromechanical system and using simulations, we tested the hypothesis that sensed hydrodynamic pressure forces can entrain body actuation through local feedback loops. We found evidence that this peripheral mechanism leads to self-organized undulatory swimming by providing intersegmental coordination and body oscillations. Swimming can be redundantly induced by central mechanisms, and we show that, therefore, a combination of both central and peripheral mechanisms offers a higher robustness against neural disruptions than any of them alone, which potentially explains how some vertebrates retain locomotor capabilities after spinal cord lesions. These results broaden our understanding of animal locomotion and expand our knowledge for the design of robust and modular robots that physically interact with the environment.
Adapting to the ground enables stable footholds in legged locomotion by exploiting the structure of the terrain. On that account, we present a passive adaptive planar foot with three rotational degrees of freedom that is lightweight and thus suited for highly dynamic legged robots. Its low laying pivot joint provides high stability towards kinking. Information about the relative foot sole pose, and accordingly, the ground orientation is gathered by inertial measurement units (IMUs) placed on the foot sole and the shank. A complementary filter is presented that fuses these orientation estimates with an angular encoder to obtain a drift-free relative foot sole pose. The passive adaptive planar foot has been tested and compared to the classical point foot design on a variety of terrains and shows superior traction performance, especially on compressible soils. Being mounted on the quadrupedal robot ANYmal, the foot provides a reliable contact detection based on the fusion of the built-in 6-axis force/torque transducer and the IMUs. This allows to walk and trot on uneven terrain, loose soils, as well as climbing up a ramp and stairs while keeping the entire foot sole in ground contact all the time.
In this paper, a comparative analysis of different gaits were done using modular snake robots. They move along different sizes of horizontal pipes. Pipe sizes were chosen according to robot's length. Gaits were chosen to match robot stability and effectiveness criteria on these surfaces. A description of gait design process is shown. Parametrized schemes were used to control the robot. A visualization tool was used to validate the gait designs prior their implementation on the real robot. Performance metrics, regarding robot's locomotion speed and energy efficiency were developed. A series of experiments were carried out to compare the performance of the selected gaits under these criteria. The experiments can be observed on the accompanying video. Among selected gaits, lateral rolling has demonstrated to be suitable for every pipe size. The fastest speed v = 46.5cm/s, and the most efficient locomotion, under the metrics proposed here, are also shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.