Tumor protein p53 (TP53) is the most frequently mutated gene in cancer 1,2. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease 3,4 , rapid transformation to acute myeloid leukemia (AML) 5 , resistance to conventional therapies 6-8 and dismal outcomes 9. Consistent with the tumor-suppressive role of TP53, patients harbor both mono-and biallelic mutations 10. However, the biological and clinical implications of TP53 allelic state have not been fully investigated in MDS or any other cancer type. We analyzed 3,324 patients with MDS for TP53 mutations and allelic imbalances and delineated two subsets of patients with distinct phenotypes and outcomes. One-third of TP53-mutated patients had monoallelic mutations whereas two-thirds had multiple hits (multi-hit) consistent with biallelic targeting. Established associations with complex karyotype, few co-occurring mutations, high-risk presentation and poor outcomes were specific to multi-hit patients only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System (IPSS-R) 11. Surprisingly, monoallelic patients did not differ from TP53 wild-type patients in outcomes and response to therapy. This study shows that consideration of TP53 allelic state is critical for diagnostic and prognostic precision in MDS as well as in future correlative studies of treatment response. In collaboration with the International Working Group for Prognosis in MDS (Supplementary Table 1), we assembled a cohort of 3,324 peridiagnostic and treatment-naive patients with MDS or closely related myeloid neoplasms (Extended Data Fig. 1 and Supplementary Fig. 1). Genetic profiling included conventional G-banding analyses (CBA) and tumor-only, capture-based, next-generation sequencing (NGS) of a panel of genes recurrently mutated in MDS, as well as genome-wide copy number probes. Allele-specific copy number profiles were generated from NGS data using the CNACS algorithm 7 (see Methods and Code availability). An additional 1,120 samples derived from the Japanese MDS consortium (Extended Data Fig. 2) were used as a validation cohort. To study the effect of TP53 allelic state on genome stability, clinical presentation, outcome and response to therapy, we performed a detailed characterization of alterations at the TP53 locus. First, we assessed genome-wide allelic imbalances in the cohort of 3,324 patients, to include arm-level or focal (~3 Mb) ploidy alterations and regions of copy-neutral loss of heterozygosity (cnLOH) (Extended Data Fig. 3, Supplementary Figs. 2-4 and Methods).
Over 90% of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) harbor somatic mutations in myeloid-related genes, but still, current diagnostic criteria do not include molecular data. We performed genome-wide sequencing techniques to characterize the mutational landscape of a large and clinically well-characterized cohort including 367 adult MDS/MPN: chronic myelomonocytic leukemia (CMML, n=119), atypical chronic myeloid leukemia (aCML, n=71), MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T, n=71) and MDS/MPN unclassifiable (MDS/MPN-U, n=106). A total of 30 genes were recurrently mutated in ≥3% of the cohort. Distribution of recurrently mutated genes and clonal architecture differed among MDS/MPN subtypes. Statistical analysis revealed significant correlations between recurrently mutated genes, as well as genotype-phenotype associations. We identified specific gene combinations that associated with distinct MDS/MPN subtypes and that were mutually exclusive with most of the other MDS/MPN (e.g. TET2-SRSF2 in CMML, ASXL1-SETBP1 in aCML or SF3B1-JAK2 in MDS/MPN-RS-T). Patients with MDS/MPN-U were the most heterogeneous and displayed different molecular profiles that mimicked the ones observed in other MDS/MPN subtypes and that had an impact on the outcome of the patients. Specific gene mutations also had an impact on the outcome of the different MDS/MPN, which may be relevant for clinical decision-making. Overall, the results of this study help to elucidate the heterogeneity found in these neoplasms, which can be of use in the clinical setting of MDS/MPN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.