Despite prevention and treatment options, breast cancer (BC) has become one of the most important issues in the present day. Therefore, the need for more specific and efficient compounds remains paramount. We evaluated four previously isolated aryltetralin lignans: 5 1 -demethoxy-β-peltatin-A-methylether (1), acetylpodophyllotoxin (2), 5 1 -demethoxydeoxypodophyllotoxin (3), and 7 1 ,8 1 -dehydroacetylpodophyllotoxin (4) for cytotoxicity, clonogenicity, and selectivity against three BC cell lines: MCF-7, MDA-MB-231, and BT-549, as well as the non-tumorigenic mammary epithelial cell line MCF-10A. Cytotoxicity was evaluated after 72 h of treatment, and clonogenicity was determined at 72 h post-treatment; experiments were performed using the sulforhodamine B staining assay. Selective-index (SI) was calculated by comparing pure compound IC 50 values in MCF-10A cell line against the IC 50 of the same compound in cancer cell lines. Structural similarities among lignans and controls (podophyllotoxin and etoposide) were analyzed using the Tanimoto coefficient (Tc). Lignans were cytotoxic against all tested cell lines (0.011-7.22 µM) and clonogenicity testing showed a dose-dependent cytocidality for all lignans (ě0.08 µg/mL); compounds 2 and 3 were more potent (14.1 and 7.6 respectively) than etoposide in BT-549 cell line, while compound 2 displayed selectivity (SI = 28.17) in BT-549 cell line. Tc values of lignans suggested a greater similarity with podophyllotoxin structure.
In this study, the biosurfactants (Bs) production of two Serratia marcescens strains (SM3 and its isogenic SMRG-5 strain) was improved and the tenso-active agents were purified and characterized. A 2 factorial design was used to evaluate the effect of nitrogen and carbon sources on the surface tension (ST) reduction and emulsion index (EI ) of the produced Bs. Optimum Bs production by SM3 was achieved at high concentrations of carbon and nitrogen, reducing ST to 26.5 ± 0.28 dynes/cm, with an EI of 79.9 ± 0.2%. Meanwhile, the best results for SMRG-5 were obtained at low concentrations, reducing the ST to 25.2 ± 0.2 dynes/cm, with an EI of 89.7 ± 0.28%. The optimal conditions for Bs production were scaled up in a 2-L reactor, yielding 4.8 and 5.2 g/L for SM3 and SMRG-5, respectively. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed the presence of two different lipopeptides (hidrofobic fractions: octadecanoic and hexadecanoic acid for SM3 and SMRG5, respectively). Both strains were capable of benzo [a] pyrene removal (59% after 72 H of culture).
BackgroundCancer is one of the leading causes of death worldwide. Natural products have been regarded as important sources of potential chemotherapeutic agents. In this study, we evaluated the anti-proliferative activity of Argemone gracilenta’s methanol extract and its fractions. We identified those compounds of the most active fractions that displayed anti-proliferative activity.MethodsThe anti-proliferative activity on different cancerous cell lines (M12.C3F6, RAW 264.7, HeLa) was evaluated in vitro using the MTT colorimetric method. Identification of the active compounds present in the fractions with the highest activity was achieved by nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) analyses.ResultsBoth argemonine and berberine alkaloids, isolated from the ethyl acetate fraction, displayed high anti-proliferative activity with IC50 values of 2.8, 2.5, 12.1, and 2.7, 2.4, 79.5 μg/mL on M12.C3F6, RAW 264.7, and HeLa cancerous cell lines, respectively. No activity was shown on the normal L-929 cell line. From the hexane fraction, a mixture of fatty acids and fatty acid esters of 16 or more carbon atoms with anti-proliferative activity was identified, showing a range of IC50 values of 16.8-24.9, 34.1-35.4, and 67.6-91.8 μg/mL on M12.C3F6, RAW 264.7, and HeLa cancerous cell lines, respectively. On the normal L-929 cell line, this mixture showed a range of IC50 values of 85.1 to 100 μg/mL.ConclusionThis is the first study that relates argemonine, berberine, and a mixture of fatty acids and fatty acid esters with the anti-proliferative activity displayed by Argemone gracilenta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.