Neuroblastoma (NB) is a neoplasm of the sympathetic nervous system, and is the most common solid tumor of infancy. NBs are very heterogeneous, with a clinical course ranging from spontaneous regression to resistance to all current forms of treatment. High-risk patients need intense chemotherapy, and only 30-40% will be cured. Relapsed or metastatic tumors acquire multi-drug resistance, raising the need for alternative treatments. Owing to the diverse mechanisms that are responsible of NB chemoresistance, we aimed to target epigenetic factors that control multiple pathways to bypass therapy resistance. We found that the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4 (SMARCA4/BRG1) was consistently upregulated in advanced stages of NB, with high BRG1 levels being indicative of poor outcome. Loss-of-function experiments in vitro and in vivo showed that BRG1 is essential for the proliferation of NB cells. Furthermore, whole-genome transcriptome analysis revealed that BRG1 controls the expression of key elements of oncogenic pathways such as PI3K/AKT and BCL2, which offers a promising new combination therapy for high-risk NB.
Activation of tumor necrosis factor receptor-1 can trigger survival or apoptosis pathways. In many cellular models, including the neuronal cell model PC12, it has been demonstrated that inhibition of protein synthesis is sufficient to render cells sensitive to apoptosis induced by TNFα. The survival effect is linked to the translocation of the transcription factor nuclear factor-kappa B (NF-κB) to the nucleus and activation of survival-related genes such as FLICE-like inhibitory protein long form (FLIP-L) or IAPs. Nonetheless, we previously reported an NF-κB-independent contribution of Bcl-xL to cell survival after TNFα treatment. Here, we demonstrate that NF-κB-induced increase in FLIP-L expression levels is essential for mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) activation. We demonstrate that FLIP-L behaves as a Raf-1 activator through both protein–protein interaction and Raf-1 kinase activation, without the requirement of the classical Ras activation. Importantly, prevention of FLIP-L increase by NF-κB inhibition or knockdown of endogenous FLIP-L blocks MAPK/ERK activation after TNFα treatment. From a functional point of view, we show that inhibition of the MAPK/ERK pathway and the NF-κB pathway are equally relevant to render PC12 cells sensitive to cell death induced by TNFα. Apoptosis induced by TNFα under these conditions is dependent on jun nuclear kinase1/2 JNK1/2-dependent Bim upregulation. Therefore, we report a previously undescribed and essential role for MAPK/ERK activation by FLIP-L in the decision between cell survival and apoptosis upon TNFα stimulation.
The neuronal long isoform of Fas Apoptotic Inhibitory Molecule (FAIM-L) protects from death receptor (DR)-induced apoptosis, yet its mechanism of protection remains unknown. Here, we show that FAIM-L protects rat neuronal Type II cells from Fas-induced apoptosis. XIAP has previously emerged as a molecular discriminator that is upregulated in Type II and downregulated in Type I apoptotic signaling. We demonstrate that FAIM-L requires sustained endogenous levels of XIAP to protect Type II cells as well as murine cortical neurons from Fas-induced apoptosis. FAIM-L interacts with the BIR2 domain of XIAP through an IAP-binding motif, the mutation of which impairs the antiapoptotic function of FAIM-L. Finally, we report that FAIM-L inhibits XIAP auto-ubiquitinylation and maintains its stability, thus conferring protection from apoptosis. Our results bring new understanding of the regulation of endogenous XIAP by a DR antagonist, pointing out at FAIM-L as a promising therapeutic tool for protection from apoptosis in pathological situations where XIAP levels are decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.