Shape-changing User Interfaces attract growing interest in Human-Computer Interaction. Modular robotics offer a great opportunity for their implementation. However, the current theoretical and technical advances of modular robotics are fragmented and little centered on the user. To unify existing work and center future research on the user, we perform a systematic literature review enabling us to build a unifying space for the design of modular shape-changing user interfaces.Our aim is to bridge the gap between HCI and robotics. We relate properties of different domains and identify inconsistencies to structure the design space. Towards this aim, we conduct a thorough cross-disciplinary survey to propose: 1) a set of design properties at the scale of the interface (macro-scale) and at the scale of the modules (micro-scale) and 2) the impact of these properties on each other. This paper can be used to describe and compare existing modular shape-changing UIs and generate new design ideas by building upon knowledge from robotics and HCI.
Figure 1: The four sliders used to investigate the impact of the size of future modules constituting the PUI: (from left to right) a current smooth slider and three sliders made of mock-up modules of 1 mm, 2.5 mm and 5 mm.
Modular Tangible User Interfaces (TUIs) -i.e., UIs made of smallscale physical modules-offer novel opportunities for tangible interaction thanks to their highly customizable form factor. Such modular TUIs were proposed with different shape of modules and bonding strength between them. The problem we address in this paper is the lack of knowledge of how bonding strength and shape of the modules impact usability. We present the first study exploring the impact of bonding strength and module shape on subjective user ratings when interacting with a magnetic modular prototype. We assessed three levels of bonding strength (low, mid, high) and two shapes (cubes and rounded cubes) in a controlled user study. Participants performed eight common manipulations found in the literature for (non-)modular TUIs. Experimental results showed that (1) cubic modules are overall easier and more satisfying to manipulate, except for precision and bending tasks, (2) low strength impairs UI solidity, but high strength impairs precision tasks with cubic modules. CCS CONCEPTS• Human-centered computing → Human computer interaction (HCI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.