This work describes new fully bio-based vitrimers prepared from isosorbide, a renewable sugar-based chemical. Isosorbide was reacted with 4-hydroxypropionic acid, paraformaldehyde, mono-ethanolamine, and/or furfurylamine via consecutive solvent-free Fischer esterification and Mannich-like ring-closure reactions. The two-step synthesis led to the formation of a ditelechelic benzoxazine-terminated isosorbide monomer, containing ester bonds and aliphatic hydroxyl and/or furan groups. The atom economy factor yields 85%. The structural features of the resulting products were substantiated by spectroscopic techniques. The ringopening polymerization was monitored by rheological and differential scanning calorimetry (DSC) measurements. Very high T g values afforded by the isosorbide substructure were measured (from 143 to 193 °C), which increase with furan ring content. Internally catalyzed transesterification reactions conferred fast dynamic exchanges (τ* = 300 s at 180 °C). Self-healing and chemical and mechanical recycling were also demonstrated. Finally, the degradability of the sugar-based polybenzoxazine vitrimers was demonstrated as well. The materials were highly stable in pH-neutral water, even at 80 °C for 60 days, but owing to the isosorbide structure, pronounced degradation was observed under acidic or alkaline conditions. In summary, isosorbide is a suitable building block for the design of degradable and 100% recyclable high-T g polybenzoxazine vitrimers.
Asymmetric di-benzoxazine monomers from naturally occurring phenolic compounds – cardanol and vanillin – were synthesized to obtain a processable and self-supported bio-thermoset with valuable properties. Such strategy constitutes an efficient and versatile route for the elaboration of biobased thermoset from a wide range of phenolic compounds derived from renewable resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.