The AIDS-associated lung pathogen Pneumocystis is classified as a fungus although Pneumocystis has several distinct features such as the absence of ergosterol, the major sterol of most fungi. The P. carinii S-adenosylmethionine:sterol C24-methyltransferase (SAM:SMT) enzyme, coded by the erg6 gene, transfers either one or two methyl groups to the C-24 position of the sterol side chain producing both C28 and C29 24-alkylsterols in approximately the same proportions whereas most fungal SAM:SMT transfer only one methyl group to the side chain. The sterol compositions of wild type Sacchromyces cerevisiae, the erg6 knockout mutant (Δerg6), and Δerg6 expressing the P. carinii or the S. cerevisiae erg6 gene were analyzed by a variety of chromatographic and spectroscopic procedures to examine functional complementation in the yeast expression system. Detailed sterol analyses were obtained using high performance liquid chromatography (HPLC) and proton nuclear magnetic resonance spectroscopy (1H-NMR). The P. carinii SAM:SMT in the Δerg6 restored its ability to produce the C28 sterol ergosterol as the major sterol, and also resulted in low levels of C29 sterols. This indicates that while the P. carinii SAM:SMT in the yeast Δerg6 cells was able to transfer a second methyl group to the side chain, the action of Δ24(28)-sterol reductase (coded by the erg4 gene) in the yeast cells prevented the formation and accumulation of as many C29 sterols as that found in P. carinii.
Pneumocandins inhibit beta-1,3-glucan synthesis preventing the development of Pneumocystis cysts that are absent from the lungs of treated rats. To determine whether treated trophozoites are capable of DNA replication, cytochemical analyses were performed on 4',6-diamidino-2-phenylindole (DAPI)- and DB181-stained Pneumocystis carinii isolated from pneumocandin L-693-989-treated rats. Fluorescence intensities of trophozoite nuclei from drug-treated rats were greater than those of untreated controls, suggesting that DNA replication was not inhibited but that cytokinesis and perhaps karyokinesis were blocked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.