The class of geometric deformable models, also known as level sets, has brought tremendous impact to medical imagery due to its capability of topology preservation and fast shape recovery. In an effort to facilitate a clear and full understanding of these powerful state-of-the-art applied mathematical tools, this paper is an attempt to explore these geometric methods, their implementations and integration of regularizers to improve the robustness of these topologically independent propagating curves/surfaces. This paper first presents the origination of level sets, followed by the taxonomy of level sets. We then derive the fundamental equation of curve/surface evolution and zero-level curves/surfaces. The paper then focuses on the first core class of level sets, known as "level sets without regularizers." This class presents five prototypes: gradient, edge, area-minimization, curvature-dependent and application driven. The next section is devoted to second core class of level sets, known as "level sets with regularizers." In this class, we present four kinds: clustering-based, Bayesian bidirectional classifier-based, shape-based and coupled constrained-based. An entire section is dedicated to optimization and quantification techniques for shape recovery when used in the level set framework. Finally, the paper concludes with 22 general merits and four demerits on level sets and the future of level sets in medical image segmentation. We present applications of level sets to complex shapes like the human cortex acquired via MRI for neurological image analysis.
Vascular segmentation has recently been given much attention. This review paper has two parts. Part I of this review focused on the physics of magnetic resonance angiography (MRA) and prefiltering techniques applied to MRA. Part II of this review presents the state-of-the-art overview, status, and new achievements in vessel segmentation algorithms from MRA. The first part of this review paper is focused on the nonskeleton or direct-based techniques. Here, we present eight different techniques along with their mathematical foundations, algorithms and their pros and cons. We will also focus on the skeleton or indirect-based techniques. We will discuss three different techniques along with their mathematical foundations, algorithms and their pros and cons. This paper also includes a clinical discussion on skeleton versus nonskeleton-based segmentation techniques. Finally, we shall conclude this paper with the possible challenges, the future, and a brief summary on vascular segmentation techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.