No abstract
Systematic generalization is the ability to combine known parts into novel meaning; an important aspect of efficient human learning, but a weakness of neural network learning. In this work, we investigate how two well-known modeling principlesmodularity and data augmentation-affect systematic generalization of neural networks in grounded language learning. We analyze how large the vocabulary needs to be to achieve systematic generalization and how similar the augmented data needs to be to the problem at hand. Our findings show that even in the controlled setting of a synthetic benchmark, achieving systematic generalization remains very difficult. After training on an augmented dataset with almost forty times more adverbs than the original problem, a non-modular baseline is not able to systematically generalize to a novel combination of a known verb and adverb. When separating the task into cognitive processes like perception and navigation, a modular neural network is able to utilize the augmented data and generalize more systematically, achieving 70% and 40% exact match increase over state-of-the-art on two gSCAN tests that have not previously been improved. We hope that this work gives insight into the drivers of systematic generalization, and what we still need to improve for neural networks to learn more like humans do.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.