Non-coding variations located within regulatory elements may alter gene expression by modifying Transcription Factor (TF) binding sites and thereby lead to functional consequences like various traits or diseases. To understand these molecular mechanisms, different TF models are being used to assess the effect of DNA sequence variations, such as Single Nucleotide Polymorphisms (SNPs). However, few statistical approaches exist to compute statistical significance of results but they often are slow for large sets of SNPs, such as data. obtained from a genome-wide association study (GWAS) or allele-specific analysis of chromatin data. Results: We investigate the distribution of maximal differential TF binding scores for general computational models that assess TF binding. We find that a modified Laplace distribution can adequately approximate the empirical distributions. A benchmark on in vitro and in vivo data sets showed that our new approach improves on an existing method in terms of performance and speed. In applications on large sets of eQTL and GWAS SNPs we could illustrate the usefulness of the novel statistic to highlight cell type specific regulators and TF target genes. Conclusions: Our approach allows the evaluation of DNA changes that induce differential TF binding in a fast and accurate manner, permitting computations on large mutation data sets. An implementation of the novel approach is freely available at https://github.com/SchulzLab/SNEEP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.