Though they are relatively understudied, non-native bees are ubiquitous and have enormous potential economic and environmental impacts. These impacts may be positive or negative, and are often unquantified. In this manuscript, I review literature on the known distribution and environmental and economic impacts of 80 species of introduced bees. The potential negative impacts of non-native bees include competition with native bees for nesting sites or floral resources, pollination of invasive weeds, co-invasion with pathogens and parasites, genetic introgression, damage to buildings, affecting the pollination of native plant species, and changing the structure of native pollination networks. The potential positive impacts of non-native bees include agricultural pollination, availability for scientific research, rescue of native species, and resilience to human-mediated disturbance and climate change. Most non-native bee species are accidentally introduced and nest in stems, twigs, and cavities in wood. In terms of number of species, the best represented families are Megachilidae and Apidae, and the best represented genus is Megachile. The best studied genera are Apis and Bombus, and most of the species in these genera were deliberately introduced for agricultural pollination. Thus, we know little about the majority of non-native bees, accidentally introduced or spreading beyond their native ranges.
Pollinator nutritional ecology provides insights into plant–pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness. Yet, we are still in the early stages of integrating data on P:L ratios across plant and bee species. Here, using a standard laboratory protocol, we present over 80 plant species’ protein and lipid concentrations and P:L values, and we evaluate the P:L ratios of pollen collected by three bee species. We discuss the general phylogenetic, phenotypic, behavioral, and ecological trends observed in these P:L ratios that may drive plant–pollinator interactions; we also present future research questions to further strengthen the field of pollination nutritional ecology. This dataset provides a foundation for researchers studying the nutritional drivers of plant–pollinator interactions as well as for stakeholders developing planting schemes to best support pollinators.
The production of diverse and affordable agricultural crop species depends on pollination services provided by bees. Indeed, the proportion of pollinator-dependent crops is increasing globally. Agriculture relies heavily on the domesticated honeybee; the services provided by this single species are under threat and becoming increasingly costly. Importantly, the free pollination services provided by diverse wild bee communities have been shown to be sufficient for high agricultural yields in some systems. However, stable, functional wild bee communities require floral resources, such as pollen and nectar, throughout their active season, not just when crop species are in flower. To target floral provisioning efforts to conserve and support native and managed bee species, we apply network theoretical methods incorporating plant and pollinator phenologies. Using a two-year dataset comprising interactions between bees (superfamily Apoidea, Anthophila) and 25 native perennial plant species in floral provisioning habitat, we identify plant and bee species that provide a key and central role to the stability of the structure of this community. We also examine three specific case studies: how provisioning habitat can provide temporally continuous support for honeybees (Apis mellifera) and bumblebees (Bombus impatiens), and how resource supplementation strategies might be designed for a single genus of important orchard pollinators (Osmia). This framework could be used to provide native bee communities with additional, well-targeted floral resources to ensure that they not only survive, but also thrive.
Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness.
The 26S proteasome is an essential multicatalytic protease complex that degrades a wide range of intracellular proteins, especially those modified with ubiquitin. Arabidopsis thaliana and other plants use pairs of genes to encode most of the core subunits, with both of the isoforms often incorporated into the mature complex. Here, we show that the gene pair encoding the regulatory particle non-ATPase subunit (RPN5) has a unique role in proteasome function and Arabidopsis development. Homozygous rpn5a rpn5b mutants could not be generated due to a defect in male gametogenesis. While single rpn5b mutants appear wild-type, single rpn5a mutants display a host of morphogenic defects, including abnormal embryogenesis, partially deetiolated development in the dark, a severely dwarfed phenotype when grown in the light, and infertility. Proteasome complexes missing RPN5a are less stable in vitro, suggesting that some of the rpn5a defects are caused by altered complex integrity. The rpn5a phenotype could be rescued by expression of either RPN5a or RPN5b, indicating functional redundancy. However, abnormal phenotypes generated by overexpression implied that paralog-specific functions also exist. Collectively, the data point to a specific role for RPN5 in the plant 26S proteasome and suggest that its two paralogous genes in Arabidopsis have both redundant and unique roles in development. INTRODUCTIONThe 26S proteasome is an ATP-dependent protease complex responsible for most selective protein degradation in the nucleus and cytoplasm of eukaryotes. Its main role is to remove proteins first modified by ubiquitin (Ub), but nonubiquitylated proteins can be substrates as well (Voges et al., 1999;Hartmann-Petersen et al., 2003;Smalle and Vierstra, 2004;Vierstra, 2009). The holoprotease of ;2.5 MD is composed of two functionally distinct and stable subcomplexes, a 14-subunit 20S core protease (CP) and an 18-or-more subunit 19S regulatory particle (RP). The CP is a broad-spectrum, ATP-, and Ub-independent peptidase. Its cylindrical shape is created by the assembly of four stacked heptameric rings of related a-and b-subunits in a symmetric a 1-7 b 1-7 b 1-7 a 1-7 configuration (Groll et al., 1997). A central chamber houses the peptidase active sites provided by the b1, b2, and b5 subunits, which have peptidylglutamyl peptide-hydrolyzing, trypsin-like, and chymotrypsin-like activities, respectively. Together, these activities cleave proteins into short peptides that are then further disassembled to free amino acids by other proteases. Access to this chamber is restricted by a narrow gated channel, which allows only unfolded proteins to enter (Groll et al., 2000;Smith et al., 2007). This self-compartmentalized design spatially separates proteolysis from the cellular milieu and restricts degradation to only those proteins that are deliberately unfolded and imported.The RP binds to each end of the CP and imparts both ATP dependence and substrate specificity to the holoenzyme, especially with respect to proteins bearing poly-Ub chains (Vo...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.