Anthocyanins are the main grape pigments. Due to their aromatic cyclic arrangements, they are able to absorb the radiation in the low energy range of the visible spectrum. In the fruit of Vitis vinifera L., the five main anthocyanidins (cyanidin, peonidin, delphinidin, petunidin and malvidin) are present as 3-O-glucosides, as well as their acetyl, p-coumaroyl and caffeoyl ester forms. Despite the huge number of experimental studies dedicated to the anthocyanin profile analysis of grapes and wines, the complete theoretical elucidation of the optical properties of grape anthocyanins is missing. The present work carried out this task through quantum chemistry calculations based on time-dependent density functional theory (TD-DFT), compared to experimental spectra. The differences in visible absorption spectra between the most common grape anthocyanins were rationalized according to B-ring substitution, glucosylation and esterification. A particular attention was given to the intra-molecular copigmentation effect, demonstrating the existence of an intra-molecular charge transfer excited state for the p-coumaroyl and caffeoyl ester forms.
Sunburn can affect grape quality both for chemical modifications and by visual impact of the browning. Optical properties of 17 white grape accessions were investigated in the visible region using a noninvasive instrument. Reflectance spectra were obtained using a Jaz System spectrometer. Browning was induced by exposing grape bunches to direct sunlight at 12:30 p.m. for 5 h. During the experiment, the global solar radiation ranged from 2.6 to 2.7 MJ m −2 h −1 and the air temperature from 24.3 to 29.2°C; the exposed berries reached a temperature of 34.2°C in comparison to the 30.4°C of the shaded ones. Differences between the spectra of controlled and exposed berries mainly emphasized the loss in chlorophyll and the formation of brown compounds. A positive correlation between the chlorophyll concentration and berry browning was proposed. Developing rapid, noninvasive, and low-cost methods based on reflectance spectroscopy could support grapevine variety characterization with respect to sunburn susceptibility as well as study of the physiological processes involved in the symptoms' appearance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.