Gold nanorods (AuNRs) have become some of the most used nanostructures for biosensing and imaging applications due to their plasmon-related optical response, which is highly sensitive toward minute changes in the AuNR aspect ratio. In this context, H2O2 has been used to trigger the chemical etching of AuNRs, thereby inducing a decrease of their aspect ratio. However, special conditions and relatively high concentrations of H2O2 are usually required, preventing the applicability of the system for biodetection purposes. To overcome this limitation we have introduced a biocatalytic species, the enzyme horseradish peroxidase (HRP) that is able to induce a gradual oxidation of AuNRs in the presence of trace concentrations of H2O2. Interestingly, the presence of halide ions has also been found to be essential for this process. As a consequence, other enzymatic reactions, such as those catalyzed by glucose oxidase, can be easily coupled to HRP activity, allowing the detection of different amounts of glucose. On the basis of these findings, we developed a highly sensitive and simple colorimetric assay that can be read out by the naked eye and allows the detection of physiological glucose concentrations in human serum.
Hydrolysis of acetylthiocholine mediated by acetylcholine esterase yields the thiol-bearing compound thiocholine. At trace concentrations, thiocholine modulates the growth of Au-Ag nanoparticles on seeding gold nanoparticles in the presence of ascorbic acid. Inhibition of the enzyme by 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284c51) or by diethyl p-nitrophenyl phosphate (paraoxon) produces lower yields of thiocholine, promoting the catalytic growth of Au-Ag nanoparticles. Here, we describe the development of a simple and sensitive colorimetric assay for the detection of AChE inhibitors.
Three innovative assays are developed for the detection of enzymatic activities of glucose oxidase (GOx) and horseradish peroxidase (HRP) by the generation of CdS quantum dots (QDs) in situ using non-conventional enzymatic reactions. In the first assay, GOx catalyzes the oxidation of 1-thio-β-D-glucose to give 1-thio-β-D-gluconic acid. The latter is spontaneously hydrolyzed to β-D-gluconic acid and H2 S, which in the presence of cadmium nitrate yields fluorescent CdS nanoparticles. In the second assay HRP catalyzes the oxidation of sodium thiosulfate with hydrogen peroxide generating H2 S and consequently CdS QDs. The combination of GOx with HRP, allowed quantification of glucose in plasma by following growth of fluorescent QDs.
Glutathione is the most abundant nonprotein molecule in the cell and plays an important role in many biological processes, including the maintenance of intracellular redox states, detoxification, and metabolism. Furthermore, glutathione levels have been linked to several human diseases, such as AIDS, Alzheimer disease, alcoholic liver disease, cardiovascular disease, diabetes mellitus, and cancer. A novel concept in bioanalysis is introduced and applied to the highly sensitive and inexpensive detection of reduced glutathione (GSH), over its oxidized form (GSSG), and glutathione reductase (GR) in human serum. This new fluorogenic bioanalytical system is based on the GSH-mediated stabilization of growing CdS nanoparticles. The sensitivity of this new assay is 5 pM of GR, which is 3 orders of magnitude better than other fluorogenic methods previously reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.