Background Immunoregulatory capacity of mesenchymal stem cells (MSC) is triggered by the inflammatory environment, which changes during tissue repair. Macrophages are essential in mediating the inflammatory response after injury and can adopt a range of functional phenotypes, exhibiting pro-inflammatory and anti-inflammatory activities. An accurate characterization of MSC activation by the inflammatory milieu is needed for improving the efficacy of regenerative therapies. In this work, we investigated the immunomodulatory functions of MSC primed with factors secreted from macrophages polarized toward a pro-inflammatory or an anti-inflammatory phenotype. We focused on the role of TNF-α and IL-10, prototypic pro-inflammatory and anti-inflammatory cytokines, respectively, as priming factors for MSC. Methods Secretion of immunoregulatory mediators from human MSC primed with media conditioned by human macrophages polarized toward a pro-inflammatory or an anti-inflammatory phenotype was determined. Immunomodulatory potential of primed MSC on polarized macrophages was studied using indirect co-cultures. Involvement of TNF-α and IL-10 in priming MSC and of PGE 2 in MSC-mediated immunomodulation was investigated employing neutralizing antibodies. Collagen hydrogels were used to study MSC and macrophages interactions in a more physiological environment. Results Priming MSC with media conditioned by pro-inflammatory or anti-inflammatory macrophages enhanced their immunomodulatory potential through increased PGE 2 secretion. We identified the pro-inflammatory cytokine TNF-α as a priming factor for MSC. Notably, the anti-inflammatory IL-10, mainly produced by pro-resolving macrophages, potentiated the priming effect of TNF-α. Collagen hydrogels acted as instructive microenvironments for MSC and macrophages functions and their crosstalk. Culturing macrophages on hydrogels stimulated anti-inflammatory versus pro-inflammatory cytokine secretion. Encapsulation of MSC within hydrogels increased PGE 2 secretion and potentiated immunomodulation on macrophages, attenuating macrophage pro-inflammatory state and sustaining anti-inflammatory activation. Priming with inflammatory factors conferred to MSC loaded in hydrogels greater immunomodulatory potential, promoting anti-inflammatory activity of macrophages. Conclusions Factors secreted by pro-inflammatory and anti-inflammatory macrophages activated the immunomodulatory potential of MSC. This was partially attributed to the priming effect of TNF-α and IL-10. Immunoregulatory functions of primed MSC were enhanced after encapsulation in hydrogels. These findings may provide insight into novel strategies to enhance MSC immunoregulatory potency. Electronic supplementary material The online version of this article (10.1186/s13287-019-1156-6) contains supplementary material, which...
Implantation of scaffolds may elicit a host foreign body response triggered by monocyte/macrophage lineage cells. Growing evidence suggests that topographical cues of scaffolds play an important role in MSC functionality. In this work, we examined whether surface topographical features can regulate paracrine interactions that MSCs establish with macrophages. Three-dimensional (3D) topography sensing drives MSCs into a spatial arrangement that stimulates the production of the anti-inflammatory proteins PGE2 and TSG-6. Compared to two-dimensional (2D) settings, 3D arrangement of MSCs co-cultured with macrophages leads to an important decrease in the secretion of soluble factors related with inflammation and chemotaxis including IL-6 and MCP-1. Attenuation of MCP-1 secretion in 3D co-cultures correlates with a decrease in the accumulation of its mRNA levels in MSCs and macrophages. Using neutralizing antibodies, we identified that the interplay between PGE2, IL-6, TSG-6 and MCP-1 in the co-cultures is strongly influenced by the micro-architecture that supports MSCs. Local inflammatory milieu provided by 3D-arranged MSCs in co-cultures induces a decrease in monocyte migration as compared to monolayer cells. This effect is partially mediated by reduced levels of IL-6 and MCP-1, proteins that up-regulate each other's secretion. Our findings highlight the importance of topographical cues in the soluble factor-guided communication between MSCs and macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.