The multidimensional data model for kriging is developed using fractional Euclidean distance matrices (FEDM). The properties of FEDM are studied by means of the kernel matrix mehod. It has been shown that the factorization of kernel matrix enables us to create the embedded set being a nonsingular simplex. Using the properties of FEDM the Gaussian random field (GRF) is constructed doing it without positive definite correlation functions usually applied for such a purpose. Created GRF can be considered as a multidimensional analogue of the Wiener process, for instance, line realizations of this GRF are namely Wiener processes. Next, the kriging method is developed based on FEDM. The method is rather simple and depends on parameters that are simply estimated by the maximum likelihood method. Computer simulation of the developed kriging extrapolator has shown that it outperforms the well known Shepard inverse distance extrapolator. Practical application of the developed approach to surrogate modelling of wastewater treatment is discussed. Theoretical investigation, computer simulation, and a practical example demonstrate that the proposed kriging model, using FEDM, can be efficiently applied to multidimensional data modelling and processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.