In order to reduce dietary nitrogen and achieve an efficient protein deposition as well as decrease N wastage, we challenged the nutrient utilization efficiency of two different producing types in front of a dietary crude protein (CP) restriction and studied the role of the microbiota in such an adaptation process. Therefore, 32 pure castrated male Duroc (DU) and 32 entire male hybrid (F2) piglets were raised in a three-phase feeding regime. At each phase, two iso caloric diets differing in CP content, also known as normal protein (NP) and low protein (LP), were fed to the animals. LP diets had a fixed restriction (2%) in CP content in regards to NP ones throughout the phases of the experiment. At the end of third phase, fecal samples were collected for microbiota analysis purposes and greenhouse gases emissions, together with ammonia, were tested. No changes were found in average daily feed intake (ADFI) of animals of two producing types (Duroc vs. F2) or those consumed different experimental diets (NP vs. LP) throughout the course of study. However, at the end of each experimental phase the average body weight (BW) of hybrid animals were higher compared to Duroc pigs, whereas a reverse trend was observed for average daily gain (ADG), where Duroc pigs showed greater values with respect to hybrid ones. Despite, greater CH4 and ammonia emissions in Duroc pigs with respect to F2, no significant differences were found in contaminant gases emissions between diets. Moreover, LP diets did not alter the microbial community structure, in terms of diversity, although some genera were affected by the dietary challenge. Results suggest that the impact of reducing 2% of CP content was limited for reduction in contaminant gases emissions and highlight the hypothesis that moderate change in the dietary protein levels can be overcome by long-term adaptation of the gut microbiota. Overall, the influence of the producing type on performance and digestive microbiota composition was more pronounced than the dietary effect. However, both producing types responded differently to CP restriction. The use of fecal microbiota as biomarker for predicting feed efficiency has a great potential that should be completed with robust predictive models to achieve consistent and valid results.
Characterization of intestinal microbiota is of great interest due to its relevant impact on growth, feed efficiency and pig carcass quality. Microbial composition shifts along the gut, but it also depends on the host (i.e., age, genetic background), diet composition and environmental conditions. To simultaneously study the effects of producing type (PT), production phase (PP) and dietary crude protein (CP) content on microbial populations, 20 Duroc pigs and 16 crossbred pigs (F2), belonging to growing and fattening phases, were used. Half of the pigs of each PT were fed a moderate CP restriction (2%). After sacrifice, contents of ileum, cecum and distal colon were collected for sequencing procedure. Fattening pigs presented higher microbial richness than growing pigs because of higher maturity and stability of the community. The F2 pigs showed higher bacterial alpha diversity and microbial network complexity (cecum and colon), especially in the fattening phase, while Duroc pigs tended to have higher Firmicutes/Bacteroidetes ratio in cecum segment. Lactobacillus was the predominant genus, and along with Streptococcus and Clostridium, their relative abundance decreased throughout the intestine. Although low CP diet did not alter the microbial diversity, it increased interaction network complexity. These results have revealed that the moderate CP restriction had lower impact on intestinal microbiota than PP and PT of pigs.
Dairy cattle contribute to environmental harm as a source of polluting gas emissions, mainly of enteric origin, but also from manure management, which varies among housing systems. Compost-bedded pack systems use manure as bedding material, which is composted in situ daily. As current literature referring to their impact on NH3 and CH4 emissions is scarce, this study aims to characterize the emissions of these two gases originating from three barns of this system, differentiating between two emission phases: static emission and dynamic emission. In addition, the experiment differentiated emissions between winter and summer. Dynamic emission, corresponding to the time of the day when the bed is being composted, increased over 3 and 60 times the static emission of NH3 and CH4, respectively. In terms of absolute emissions, both gases presented higher emissions during summer (1.86 to 4.08 g NH3 m−2 day−1 and 1.0 to 4.75 g CH4 m−2 day−1 for winter and summer, respectively). In this way, contaminant gases produced during the tilling process of the manure, especially during the warmer periods of the year, need to be taken into account as they work as a significant factor in emissions derived from compost-bedded pack systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.