Introductory ParagraphLong-lived microtubules endow the eukaryotic cell with long-range transport abilities. While long-lived microtubules are acetylated on lysine 40 of α-tubulin (αK40), acetylation takes place after stabilization1 and does not protect against depolymerization2. Instead, αK40 acetylation has been proposed to mechanically stabilize microtubules3. Yet how modification of αK40, a residue exposed to the microtubule lumen and inaccessible from MAPs and motors1,4, could affect microtubule mechanics remains an open question. Here we develop FRET-based assays that report on the lateral interactions between protofilaments and find that αK40 acetylation directly weakens inter-protofilament interactions. Congruently, αK40 acetylation affects two processes largely governed by inter-protofilament interactions, reducing the nucleation frequency and accelerating the shrinkage rate. Most relevant to the biological function of acetylation, microfluidics manipulations demonstrate that αK40 acetylation enhances flexibility and confers resilience against repeated mechanical stresses. Thus, unlike deacetylated microtubules that accumulate damages when subjected to repeated stresses, long-lived microtubules are protected from mechanical aging through their acquisition of αK40 acetylation. Thus, unlike other tubulin post-translational modifications that act through MAPs, motors and severing enzymes, intraluminal acetylation directly tunes the compliance and resilience of microtubules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.