High ammonium (NH4), arsenic (As) and boron (B) concentrations are found in aquifers worldwide and are often related to human activities. However, natural processes can also lead to groundwater quality problems. High NH4, As and B concentrations have been identified in the confined, deep portion of the Niebla-Posadas aquifer, which is near the Cobre Las Cruces (CLC) mining complex. The mine has implemented a Drainage and Reinjection System comprising two rings of wells around the open pit mine, were the internal ring drains and the external ring is used for water reinjection into the aquifer. Differentiating geogenic and anthropogenic sources and processes is therefore crucial to ensuring good management of groundwater in this sensitive area where groundwater is extensively used for agriculture, industry, mining and human supply. No NH4, As and B are found in the recharge area, but their concentrations increase with depth, salinity and residence time of water in the aquifer. The increased salinity down-flow is interpreted as the result of natural mixing between infiltrated meteoric water and the remains of connate waters (up to 8%) trapped within the pores. Ammonium and boron are interpreted as the result of marine solid organic matter degradation by the sulfate dissolved in the recharge water. The light δ(15)NNH4 values confirm that its origin is linked to marine organic matter. High arsenic concentrations in groundwater are interpreted as being derived from reductive dissolution of As-bearing goethite by dissolved organic matter. The lack of correlation between dissolved Fe and As is explained by the massive precipitation of siderite, which is abundantly found in the mineralization. Therefore, the presence of high arsenic, ammonium and boron concentrations is attributed to natural processes. Ammonium, arsenic, boron and salinity define three zones of groundwater quality: the first zone is close to the recharge area and contains water of sufficient quality for human drinking; the second zone is downflow and contains groundwater suitable for continuous irrigation but not drinkable due to high ammonium concentrations; and the third zone contains groundwater of elevated salinity (up to 5940 μS cm(-1)) and is not useable due to high ammonium, arsenic and boron concentrations.
The Niebla-Posadas (NP) aquifer in southern Spain is one of the main groundwater sources for the lower Guadalquivir Valley, a semiarid region supporting an important population, agriculture and industry. To contribute to the understanding of this aquifer the assessment of sustainable use of groundwater, the residence time of groundwater in the NP aquifer has been estimated using 3H, 14C and 36Cl. Along the flow paths, recharged groundwater mixes with NaCl-type waters and undergoes calcite dissolution and is further modified by cation exchange (Ca-Na). Consequently, the water loses most of its calcium and the residual δ13CDIC in the groundwater is isotopically enriched. Further modifications take place along the flow path in deeper zones, where depleted δ13CDIC values are overprinted due to SO4-2 and iron oxide reduction is triggered by the presence of organic matter. Dating with 3H, 14C and 36Cl has allowed the differentiation of several zones: recharge zone (<0.06 ky), intermediate zone (0.06-20 ky), deep zone 1 (20-30 ky), and deep zone 2 (> 30 ky). An apparent link between the tectonic structure and the groundwater residence time zonation can be established. Regional faults clearly separates deep zone 1 from the distinctly older age (>30 ky) deep zone 2. From the estimated residence times, two groundwater areas of different behavior can be differentiated within the aquifer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.