To further understand the mechanisms of formalin-inactivated Coxiella burnetii phase I (PI) vaccine (PIV)-induced protection, we examined if B cell, T cell, CD4 ؉ T cell, or CD8 ؉ T cell deficiency in mice significantly affects the ability of PIV to confer protection against a C. burnetii infection. Interestingly, compared to wild-type (WT) mice, PIV conferred comparable levels of protection in CD4 ؉ T cell-or CD8 ؉ T cell-deficient mice and partial protection in T cell-deficient mice but did not provide measurable protection in B cell-deficient mice. These results suggest that PIV-induced protection depends on B cells. In addition, anti-PI-specific IgM was the major detectable antibody (Ab) in immune sera from PIV-vaccinated CD4 ؉ T cell-deficient mice, and passive transfer of immune sera from PIV-vaccinated CD4 ؉ T cell-deficient mice conferred significant protection. These results suggest that T cell-independent anti-PI-specific IgM may contribute to PIV-induced protection. Our results also suggested that PIV-induced protection may not depend on complement activation and Fc receptor-mediated effector functions. Furthermore, our results demonstrated that both IgM and IgG from PIV-vaccinated WT mouse sera were able to inhibit C. burnetii infection in vivo, but only IgM from PIV-vaccinated CD4؉ T cell-deficient mouse sera inhibited C. burnetii infection. Collectively, these findings suggest that PIV-induced protection depends on B cells to produce protective IgM and IgG and that T cell-independent anti-PI-specific IgM may play a critical role in PIV-induced protection against C. burnetii infection.
Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes the zoonotic disease Q fever. Although Q fever is mainly transmitted by aerosol infection, study of the immune responses in the lung following pulmonary C. burnetii infection is lacking. Neutrophils are considered the first immune cell to migrate into the lung and play an important role in host defense against aerosol infection with microbial pathogens. However, the role of neutrophils in the host defense against C. burnetii infection remains unclear. To determine the role of neutrophils in protective immunity against C. burnetii infection, the RB6-8C5 antibody was used to deplete neutrophils in mice before intranasal infection with C. burnetii. The results indicated that neutrophil-depleted mice developed more severe disease than their wild-type counterparts, suggesting that neutrophils play an important role in host defense against C. burnetii pulmonary infection. We also found that neither CXC chemokine receptor 2 (CXCR2) nor interleukin-17 (IL-17) receptor (IL-17R) deficiency changed the severity of disease following intranasal C. burnetii challenge, suggesting that keratinocyte-derived chemokine and IL-17 may not play essential roles in the response to C. burnetii infection. However, significantly higher C. burnetii genome copy numbers were detected in the lungs of IL-1R ؊/؊ mice at 14 days postinfection. This indicates that IL-1 may be important for the clearance of C. burnetii from the lungs following intranasal infection. Our results also suggest that neutrophils are involved in protecting vaccinated mice from C. burnetii challenge-induced disease. This is the first study to demonstrate an important role for neutrophils in protective immunity against C. burnetii infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.