This paper aims to consider user equilibrium problems in transportation networks in the most complete and realistic situations. In fact, the presented model allows for the dependence of data on time, the presence of elastic travel demands, the capacity restrictions and delay effects. The equilibrium conditions for such a model are given and the equivalent formulation in terms of a quasi-variational inequality is discussed. Moreover, a theorem for the existence of solutions is shown and a numerical example is provided. Finally, some questions of stability are studied.
In this paper, we study the competition of healthcare institutions for medical supplies in emergencies caused by natural disasters. In particular, we develop a two-stage procurement planning model in a random environment. We consider a pre-event policy, in which each healthcare institution seeks to minimize the purchasing cost of medical items and the transportation time from the first stage, and a recourse decision process to optimize the expected overall costs and the penalty for the prior plan, in response to each disaster scenario. Thus, each institution deals with a two-stage stochastic programming model that takes into account the unmet demand at the first stage, and the consequent penalty. Then, the institutions simultaneously solve their own stochastic optimization problems and reach a stable state governed by the stochastic Nash equilibrium concept. Moreover, we formulate the problem as a variational inequality; both the discrete and the general probability distribution cases are described. We also present an alternative formulation using infinite-dimensional duality tools. Finally, we discuss some numerical illustrations applying the progressive hedging algorithm.
In this paper we develop the time-dependent pollution control problem in which different countries aim to determine the optimal investment allocation in environmental projects and the tolerable pollutant emissions, so as to maximize their welfare. We provide the equilibrium conditions governing the model and derive the evolutionary variational inequality formulation. The existence of solutions is investigated and a numerical example is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.